Properties

Label 59150.bq
Number of curves $4$
Conductor $59150$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 59150.bq have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 59150.bq do not have complex multiplication.

Modular form 59150.2.a.bq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{7} + q^{8} - 3 q^{9} - 4 q^{11} - q^{14} + q^{16} + 6 q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 59150.bq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
59150.bq1 59150be4 \([1, -1, 1, -249839830, 1519537825797]\) \(22868021811807457713/8953460393696\) \(675260050147428063500000\) \([2]\) \(15482880\) \(3.5372\)  
59150.bq2 59150be3 \([1, -1, 1, -132215830, -573850302203]\) \(3389174547561866673/74853681183008\) \(5645381594019900960500000\) \([2]\) \(15482880\) \(3.5372\)  
59150.bq3 59150be2 \([1, -1, 1, -17971830, 16105713797]\) \(8511781274893233/3440817243136\) \(259502619320688016000000\) \([2, 2]\) \(7741440\) \(3.1906\)  
59150.bq4 59150be1 \([1, -1, 1, 3660170, 1828593797]\) \(71903073502287/60782804992\) \(-4584171721572352000000\) \([2]\) \(3870720\) \(2.8441\) \(\Gamma_0(N)\)-optimal