Show commands: SageMath
Rank
The elliptic curves in class 59150.ba have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 59150.ba do not have complex multiplication.Modular form 59150.2.a.ba
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 59150.ba
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 59150.ba1 | 59150n4 | \([1, 1, 0, -61974500, -187810381000]\) | \(349046010201856969/7245875000\) | \(546475854107421875000\) | \([2]\) | \(6967296\) | \(3.0979\) | |
| 59150.ba2 | 59150n3 | \([1, 1, 0, -4007500, -2721750000]\) | \(94376601570889/12235496000\) | \(922787534566625000000\) | \([2]\) | \(3483648\) | \(2.7513\) | |
| 59150.ba3 | 59150n2 | \([1, 1, 0, -1282375, 131709375]\) | \(3092354182009/1689383150\) | \(127411403013567968750\) | \([2]\) | \(2322432\) | \(2.5486\) | |
| 59150.ba4 | 59150n1 | \([1, 1, 0, -986625, 376294625]\) | \(1408317602329/2153060\) | \(162381396649062500\) | \([2]\) | \(1161216\) | \(2.2020\) | \(\Gamma_0(N)\)-optimal |