Properties

Label 59150.ba
Number of curves $4$
Conductor $59150$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 59150.ba have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 59150.ba do not have complex multiplication.

Modular form 59150.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} - 2 q^{6} + q^{7} - q^{8} + q^{9} + 2 q^{12} - q^{14} + q^{16} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 59150.ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
59150.ba1 59150n4 \([1, 1, 0, -61974500, -187810381000]\) \(349046010201856969/7245875000\) \(546475854107421875000\) \([2]\) \(6967296\) \(3.0979\)  
59150.ba2 59150n3 \([1, 1, 0, -4007500, -2721750000]\) \(94376601570889/12235496000\) \(922787534566625000000\) \([2]\) \(3483648\) \(2.7513\)  
59150.ba3 59150n2 \([1, 1, 0, -1282375, 131709375]\) \(3092354182009/1689383150\) \(127411403013567968750\) \([2]\) \(2322432\) \(2.5486\)  
59150.ba4 59150n1 \([1, 1, 0, -986625, 376294625]\) \(1408317602329/2153060\) \(162381396649062500\) \([2]\) \(1161216\) \(2.2020\) \(\Gamma_0(N)\)-optimal