Properties

Label 5915.g
Number of curves $4$
Conductor $5915$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5915.g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5915.g do not have complex multiplication.

Modular form 5915.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} + q^{7} - 3 q^{8} - 3 q^{9} - q^{10} + q^{14} - q^{16} - 6 q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5915.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5915.g1 5915a3 \([1, -1, 0, -67040, -6343349]\) \(6903498885921/374712065\) \(1808663567750585\) \([2]\) \(21504\) \(1.6836\)  
5915.g2 5915a2 \([1, -1, 0, -12115, 390456]\) \(40743095121/10144225\) \(48964236528025\) \([2, 2]\) \(10752\) \(1.3370\)  
5915.g3 5915a1 \([1, -1, 0, -11270, 463295]\) \(32798729601/3185\) \(15373386665\) \([2]\) \(5376\) \(0.99046\) \(\Gamma_0(N)\)-optimal
5915.g4 5915a4 \([1, -1, 0, 29290, 2452425]\) \(575722725759/874680625\) \(-4221916312875625\) \([2]\) \(21504\) \(1.6836\)