Properties

Label 5808.bc
Number of curves $4$
Conductor $5808$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5808.bc have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5808.bc do not have complex multiplication.

Modular form 5808.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} - 4 q^{7} + q^{9} + 6 q^{13} + 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5808.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5808.bc1 5808bf3 \([0, 1, 0, -681512, -216777420]\) \(4824238966273/66\) \(478916714496\) \([2]\) \(46080\) \(1.7971\)  
5808.bc2 5808bf2 \([0, 1, 0, -42632, -3391500]\) \(1180932193/4356\) \(31608503156736\) \([2, 2]\) \(23040\) \(1.4506\)  
5808.bc3 5808bf4 \([0, 1, 0, -23272, -6465868]\) \(-192100033/2371842\) \(-17210829968842752\) \([2]\) \(46080\) \(1.7971\)  
5808.bc4 5808bf1 \([0, 1, 0, -3912, 372]\) \(912673/528\) \(3831333715968\) \([2]\) \(11520\) \(1.1040\) \(\Gamma_0(N)\)-optimal