Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-3301465x-2309192023\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-3301465xz^2-2309192023z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-4278698667x-107724826929114\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2098, -1049)$ | $0$ | $2$ |
Integral points
\( \left(2098, -1049\right) \)
Invariants
Conductor: | $N$ | = | \( 570 \) | = | $2 \cdot 3 \cdot 5 \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-1471455901872240$ | = | $-1 \cdot 2^{4} \cdot 3 \cdot 5 \cdot 19^{10} $ |
|
j-invariant: | $j$ | = | \( -\frac{3979640234041473454886161}{1471455901872240} \) | = | $-1 \cdot 2^{-4} \cdot 3^{-1} \cdot 5^{-1} \cdot 19^{-10} \cdot 269^{3} \cdot 589109^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2622555307320653271016376349$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.2622555307320653271016376349$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.057796439598937$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $8.926328436055433$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.056000625038379624750293390221$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot1\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.8000312519189812375146695110 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $25$ = $5^2$ (exact) |
|
BSD formula
$$\begin{aligned} 2.800031252 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{25 \cdot 0.056001 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 2.800031252\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 12000 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$19$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$5$ | 5B.1.2 | 5.24.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 \), index $288$, genus $5$, and generators
$\left(\begin{array}{rr} 1121 & 20 \\ 1120 & 21 \end{array}\right),\left(\begin{array}{rr} 571 & 20 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 462 & 13 \\ 1055 & 956 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 295 & 956 \end{array}\right),\left(\begin{array}{rr} 781 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 900 & 791 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1140])$ is a degree-$945561600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1140\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 15 = 3 \cdot 5 \) |
$3$ | split multiplicative | $4$ | \( 190 = 2 \cdot 5 \cdot 19 \) |
$5$ | split multiplicative | $6$ | \( 6 = 2 \cdot 3 \) |
$19$ | nonsplit multiplicative | $20$ | \( 30 = 2 \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 570.l
consists of 4 curves linked by isogenies of
degrees dividing 10.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.86640.2 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\zeta_{5})\) | \(\Z/10\Z\) | not in database |
$5$ | 5.1.2531250000.8 | \(\Z/10\Z\) | not in database |
$8$ | 8.0.1688960160000.18 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.65792250000.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.230859741870000.11 | \(\Z/6\Z\) | not in database |
$8$ | \(\Q(\zeta_{15})\) | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$10$ | 10.0.96108398437500000000.105 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/20\Z\) | not in database |
$20$ | 20.0.5131569027900695800781250000000000000000.13 | \(\Z/5\Z \oplus \Z/10\Z\) | not in database |
$20$ | 20.2.15464197185473069561777343750000000000000000000000000000.1 | \(\Z/20\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 19 |
---|---|---|---|---|
Reduction type | split | split | split | nonsplit |
$\lambda$-invariant(s) | 1 | 3 | 3 | 0 |
$\mu$-invariant(s) | 0 | 0 | 1 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.