Learn more

Refine search


Results (42 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
570.a1 570.a \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1998, -35148]$ \(y^2+xy=x^3+x^2-1998x-35148\)
570.a2 570.a \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -78, -972]$ \(y^2+xy=x^3+x^2-78x-972\)
570.b1 570.b \( 2 \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.311649543$ $[1, 1, 0, -1618, 24388]$ \(y^2+xy=x^3+x^2-1618x+24388\)
570.b2 570.b \( 2 \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.623299087$ $[1, 1, 0, -98, 372]$ \(y^2+xy=x^3+x^2-98x+372\)
570.c1 570.c \( 2 \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.102645889$ $[1, 1, 0, -397, 2881]$ \(y^2+xy=x^3+x^2-397x+2881\)
570.c2 570.c \( 2 \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.205291779$ $[1, 1, 0, -17, 69]$ \(y^2+xy=x^3+x^2-17x+69\)
570.d1 570.d \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1233444, -527363678]$ \(y^2+xy+y=x^3-1233444x-527363678\)
570.d2 570.d \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -233764, 33569186]$ \(y^2+xy+y=x^3-233764x+33569186\)
570.d3 570.d \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -78244, -7985758]$ \(y^2+xy+y=x^3-78244x-7985758\)
570.d4 570.d \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 3676, -514654]$ \(y^2+xy+y=x^3+3676x-514654\)
570.e1 570.e \( 2 \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $1.006520944$ $[1, 0, 1, -968, -11662]$ \(y^2+xy+y=x^3-968x-11662\)
570.e2 570.e \( 2 \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/4\Z$ $0.251630236$ $[1, 0, 1, -448, 3506]$ \(y^2+xy+y=x^3-448x+3506\)
570.e3 570.e \( 2 \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.503260472$ $[1, 0, 1, -68, -142]$ \(y^2+xy+y=x^3-68x-142\)
570.e4 570.e \( 2 \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $1.006520944$ $[1, 0, 1, 12, -14]$ \(y^2+xy+y=x^3+12x-14\)
570.f1 570.f \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -7478, -240952]$ \(y^2+xy+y=x^3-7478x-240952\)
570.f2 570.f \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -1103, 13898]$ \(y^2+xy+y=x^3-1103x+13898\)
570.f3 570.f \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -23, 506]$ \(y^2+xy+y=x^3-23x+506\)
570.f4 570.f \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 202, -13624]$ \(y^2+xy+y=x^3+202x-13624\)
570.g1 570.g \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -621, -6207]$ \(y^2+xy+y=x^3+x^2-621x-6207\)
570.g2 570.g \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -51, -51]$ \(y^2+xy+y=x^3+x^2-51x-51\)
570.g3 570.g \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -31, 53]$ \(y^2+xy+y=x^3+x^2-31x+53\)
570.g4 570.g \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 199, -151]$ \(y^2+xy+y=x^3+x^2+199x-151\)
570.h1 570.h \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -30, -75]$ \(y^2+xy+y=x^3+x^2-30x-75\)
570.h2 570.h \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 0, -3]$ \(y^2+xy+y=x^3+x^2-3\)
570.i1 570.i \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -492480, 132819117]$ \(y^2+xy+y=x^3+x^2-492480x+132819117\)
570.i2 570.i \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -31160, 2011565]$ \(y^2+xy+y=x^3+x^2-31160x+2011565\)
570.i3 570.i \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -30780, 2065677]$ \(y^2+xy+y=x^3+x^2-30780x+2065677\)
570.i4 570.i \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -1900, 32525]$ \(y^2+xy+y=x^3+x^2-1900x+32525\)
570.j1 570.j \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -23326, -1373170]$ \(y^2+xy=x^3-23326x-1373170\)
570.j2 570.j \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1456, -21604]$ \(y^2+xy=x^3-1456x-21604\)
570.k1 570.k \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -463231, 77449961]$ \(y^2+xy=x^3-463231x+77449961\)
570.k2 570.k \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -414991, 102863225]$ \(y^2+xy=x^3-414991x+102863225\)
570.k3 570.k \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -25871, 1614201]$ \(y^2+xy=x^3-25871x+1614201\)
570.k4 570.k \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 85489, 8420985]$ \(y^2+xy=x^3+85489x+8420985\)
570.l1 570.l \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -52823445, -147775056075]$ \(y^2+xy=x^3-52823445x-147775056075\)
570.l2 570.l \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -3301465, -2309192023]$ \(y^2+xy=x^3-3301465x-2309192023\)
570.l3 570.l \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/10\Z$ $1$ $[1, 0, 0, -87945, -8655975]$ \(y^2+xy=x^3-87945x-8655975\)
570.l4 570.l \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/10\Z$ $1$ $[1, 0, 0, 9335, -737383]$ \(y^2+xy=x^3+9335x-737383\)
570.m1 570.m \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -3040, 64262]$ \(y^2+xy=x^3-3040x+64262\)
570.m2 570.m \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -220, 650]$ \(y^2+xy=x^3-220x+650\)
570.m3 570.m \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -190, 992]$ \(y^2+xy=x^3-190x+992\)
570.m4 570.m \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, -10, 20]$ \(y^2+xy=x^3-10x+20\)
  Download to