Properties

Label 570.2.a.l
Level $570$
Weight $2$
Character orbit 570.a
Self dual yes
Analytic conductor $4.551$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - 2 q^{7} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - 2 q^{7} + q^{8} + q^{9} + q^{10} + 2 q^{11} + q^{12} + 4 q^{13} - 2 q^{14} + q^{15} + q^{16} - 2 q^{17} + q^{18} - q^{19} + q^{20} - 2 q^{21} + 2 q^{22} + 4 q^{23} + q^{24} + q^{25} + 4 q^{26} + q^{27} - 2 q^{28} + q^{30} - 8 q^{31} + q^{32} + 2 q^{33} - 2 q^{34} - 2 q^{35} + q^{36} + 8 q^{37} - q^{38} + 4 q^{39} + q^{40} - 8 q^{41} - 2 q^{42} - 6 q^{43} + 2 q^{44} + q^{45} + 4 q^{46} - 12 q^{47} + q^{48} - 3 q^{49} + q^{50} - 2 q^{51} + 4 q^{52} - 6 q^{53} + q^{54} + 2 q^{55} - 2 q^{56} - q^{57} + q^{60} + 2 q^{61} - 8 q^{62} - 2 q^{63} + q^{64} + 4 q^{65} + 2 q^{66} + 8 q^{67} - 2 q^{68} + 4 q^{69} - 2 q^{70} - 8 q^{71} + q^{72} + 14 q^{73} + 8 q^{74} + q^{75} - q^{76} - 4 q^{77} + 4 q^{78} + q^{80} + q^{81} - 8 q^{82} + 4 q^{83} - 2 q^{84} - 2 q^{85} - 6 q^{86} + 2 q^{88} + q^{90} - 8 q^{91} + 4 q^{92} - 8 q^{93} - 12 q^{94} - q^{95} + q^{96} - 12 q^{97} - 3 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 1.00000 1.00000 −2.00000 1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 570.2.a.l 1
3.b odd 2 1 1710.2.a.b 1
4.b odd 2 1 4560.2.a.o 1
5.b even 2 1 2850.2.a.e 1
5.c odd 4 2 2850.2.d.q 2
15.d odd 2 1 8550.2.a.bf 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.a.l 1 1.a even 1 1 trivial
1710.2.a.b 1 3.b odd 2 1
2850.2.a.e 1 5.b even 2 1
2850.2.d.q 2 5.c odd 4 2
4560.2.a.o 1 4.b odd 2 1
8550.2.a.bf 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(570))\):

\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T - 2 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T - 4 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 8 \) Copy content Toggle raw display
$37$ \( T - 8 \) Copy content Toggle raw display
$41$ \( T + 8 \) Copy content Toggle raw display
$43$ \( T + 6 \) Copy content Toggle raw display
$47$ \( T + 12 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T - 8 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T - 14 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T + 12 \) Copy content Toggle raw display
show more
show less