Show commands: SageMath
Rank
The elliptic curves in class 5610c have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 5610c do not have complex multiplication.Modular form 5610.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 5610c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 5610.a2 | 5610c1 | \([1, 1, 0, -22788, -7267632]\) | \(-1308796492121439049/22000592486400000\) | \(-22000592486400000\) | \([2]\) | \(49920\) | \(1.8170\) | \(\Gamma_0(N)\)-optimal |
| 5610.a1 | 5610c2 | \([1, 1, 0, -719108, -234128688]\) | \(41125104693338423360329/179205840000000000\) | \(179205840000000000\) | \([2]\) | \(99840\) | \(2.1636\) |