Learn more

Refine search


Results (1-50 of 98 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
5610.a1 5610.a \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -719108, -234128688]$ \(y^2+xy=x^3+x^2-719108x-234128688\)
5610.a2 5610.a \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -22788, -7267632]$ \(y^2+xy=x^3+x^2-22788x-7267632\)
5610.b1 5610.b \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.301859142$ $[1, 1, 0, -143, 363]$ \(y^2+xy=x^3+x^2-143x+363\)
5610.b2 5610.b \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.603718284$ $[1, 1, 0, 27, 57]$ \(y^2+xy=x^3+x^2+27x+57\)
5610.c1 5610.c \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.127882577$ $[1, 1, 0, -11968, 498988]$ \(y^2+xy=x^3+x^2-11968x+498988\)
5610.c2 5610.c \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.127882577$ $[1, 1, 0, -1048, 532]$ \(y^2+xy=x^3+x^2-1048x+532\)
5610.c3 5610.c \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.563941288$ $[1, 1, 0, -748, 7552]$ \(y^2+xy=x^3+x^2-748x+7552\)
5610.c4 5610.c \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.127882577$ $[1, 1, 0, -28, 208]$ \(y^2+xy=x^3+x^2-28x+208\)
5610.d1 5610.d \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 27, -243]$ \(y^2+xy=x^3+x^2+27x-243\)
5610.e1 5610.e \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.674348531$ $[1, 1, 0, -88, -308]$ \(y^2+xy=x^3+x^2-88x-308\)
5610.e2 5610.e \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.837174265$ $[1, 1, 0, 162, -1458]$ \(y^2+xy=x^3+x^2+162x-1458\)
5610.f1 5610.f \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 1768, 4866]$ \(y^2+xy=x^3+x^2+1768x+4866\)
5610.g1 5610.g \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -567947, 164507661]$ \(y^2+xy=x^3+x^2-567947x+164507661\)
5610.g2 5610.g \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -35547, 2551581]$ \(y^2+xy=x^3+x^2-35547x+2551581\)
5610.g3 5610.g \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -15147, 5485101]$ \(y^2+xy=x^3+x^2-15147x+5485101\)
5610.g4 5610.g \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -3547, -14819]$ \(y^2+xy=x^3+x^2-3547x-14819\)
5610.h1 5610.h \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.719426129$ $[1, 1, 0, -376907, 86267439]$ \(y^2+xy=x^3+x^2-376907x+86267439\)
5610.h2 5610.h \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.359713064$ $[1, 1, 0, -58157, -3556311]$ \(y^2+xy=x^3+x^2-58157x-3556311\)
5610.h3 5610.h \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.719426129$ $[1, 1, 0, -52377, -4634859]$ \(y^2+xy=x^3+x^2-52377x-4634859\)
5610.h4 5610.h \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.719426129$ $[1, 1, 0, 168113, -24237389]$ \(y^2+xy=x^3+x^2+168113x-24237389\)
5610.i1 5610.i \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -185702, -30879084]$ \(y^2+xy=x^3+x^2-185702x-30879084\)
5610.i2 5610.i \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -11622, -484716]$ \(y^2+xy=x^3+x^2-11622x-484716\)
5610.j1 5610.j \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.499014945$ $[1, 1, 0, -4242, 107316]$ \(y^2+xy=x^3+x^2-4242x+107316\)
5610.k1 5610.k \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\mathsf{trivial}$ $4.466711743$ $[1, 0, 1, -2864, -71938]$ \(y^2+xy+y=x^3-2864x-71938\)
5610.l1 5610.l \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\mathsf{trivial}$ $1.322635157$ $[1, 0, 1, -91939, -29111074]$ \(y^2+xy+y=x^3-91939x-29111074\)
5610.m1 5610.m \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.331993877$ $[1, 0, 1, -8504, 301106]$ \(y^2+xy+y=x^3-8504x+301106\)
5610.m2 5610.m \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.165996938$ $[1, 0, 1, -8254, 319706]$ \(y^2+xy+y=x^3-8254x+319706\)
5610.n1 5610.n \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.777637203$ $[1, 0, 1, -9989, 383402]$ \(y^2+xy+y=x^3-9989x+383402\)
5610.n2 5610.n \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.388818601$ $[1, 0, 1, -639, 5662]$ \(y^2+xy+y=x^3-639x+5662\)
5610.n3 5610.n \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.777637203$ $[1, 0, 1, -139, -538]$ \(y^2+xy+y=x^3-139x-538\)
5610.n4 5610.n \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.777637203$ $[1, 0, 1, 711, 26722]$ \(y^2+xy+y=x^3+711x+26722\)
5610.o1 5610.o \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $7.815521508$ $[1, 0, 1, -220364, -39529438]$ \(y^2+xy+y=x^3-220364x-39529438\)
5610.o2 5610.o \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $3.907760754$ $[1, 0, 1, -23844, 403426]$ \(y^2+xy+y=x^3-23844x+403426\)
5610.o3 5610.o \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/6\Z$ $2.605173836$ $[1, 0, 1, -18899, 966116]$ \(y^2+xy+y=x^3-18899x+966116\)
5610.o4 5610.o \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/6\Z$ $1.302586918$ $[1, 0, 1, -18729, 984952]$ \(y^2+xy+y=x^3-18729x+984952\)
5610.p1 5610.p \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -74157234, 245812062532]$ \(y^2+xy+y=x^3-74157234x+245812062532\)
5610.q1 5610.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -201236483, -1098790303234]$ \(y^2+xy+y=x^3-201236483x-1098790303234\)
5610.q2 5610.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -12661763, -16927055362]$ \(y^2+xy+y=x^3-12661763x-16927055362\)
5610.q3 5610.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -12577283, -17169377794]$ \(y^2+xy+y=x^3-12577283x-17169377794\)
5610.q4 5610.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -2484908, -1506795694]$ \(y^2+xy+y=x^3-2484908x-1506795694\)
5610.q5 5610.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -1627388, 790397138]$ \(y^2+xy+y=x^3-1627388x+790397138\)
5610.q6 5610.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -780803, -272099842]$ \(y^2+xy+y=x^3-780803x-272099842\)
5610.q7 5610.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 1, -189908, -12291694]$ \(y^2+xy+y=x^3-189908x-12291694\)
5610.q8 5610.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, 43372, -1467502]$ \(y^2+xy+y=x^3+43372x-1467502\)
5610.r1 5610.r \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\Z/3\Z$ $0.685997473$ $[1, 0, 1, -103, 398]$ \(y^2+xy+y=x^3-103x+398\)
5610.r2 5610.r \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\mathsf{trivial}$ $2.057992419$ $[1, 0, 1, 422, 1868]$ \(y^2+xy+y=x^3+422x+1868\)
5610.s1 5610.s \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.095885285$ $[1, 0, 1, 777, -123494]$ \(y^2+xy+y=x^3+777x-123494\)
5610.t1 5610.t \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2417353, -1087483252]$ \(y^2+xy+y=x^3-2417353x-1087483252\)
5610.t2 5610.t \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -829978, 290863148]$ \(y^2+xy+y=x^3-829978x+290863148\)
5610.t3 5610.t \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -43898, 5987756]$ \(y^2+xy+y=x^3-43898x+5987756\)
Next   Download to