Properties

Label 5586.h
Number of curves $1$
Conductor $5586$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5586.h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5586.h do not have complex multiplication.

Modular form 5586.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} + 3 q^{11} - q^{12} + 4 q^{13} - q^{15} + q^{16} + 4 q^{17} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 5586.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5586.h1 5586h1 \([1, 1, 0, 65313, -5122683]\) \(628805222251722551/597713542447104\) \(-29287963579908096\) \([]\) \(56448\) \(1.8468\) \(\Gamma_0(N)\)-optimal