Properties

Label 55275f
Number of curves $4$
Conductor $55275$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 55275f have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(67\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55275f do not have complex multiplication.

Modular form 55275.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} + q^{6} + 4 q^{7} + 3 q^{8} + q^{9} - q^{11} + q^{12} - 2 q^{13} - 4 q^{14} - q^{16} - 6 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 55275f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55275.d3 55275f1 \([1, 1, 1, -9488, -347344]\) \(6045477024313/238370121\) \(3724533140625\) \([2]\) \(122880\) \(1.1791\) \(\Gamma_0(N)\)-optimal
55275.d2 55275f2 \([1, 1, 1, -24613, 1013906]\) \(105535468883593/32073586281\) \(501149785640625\) \([2, 2]\) \(245760\) \(1.5256\)  
55275.d4 55275f3 \([1, 1, 1, 67512, 6909906]\) \(2177941476727367/2569760103537\) \(-40152501617765625\) \([2]\) \(491520\) \(1.8722\)  
55275.d1 55275f4 \([1, 1, 1, -358738, 82540406]\) \(326765283429753433/53863946433\) \(841624163015625\) \([2]\) \(491520\) \(1.8722\)