Show commands: SageMath
Rank
The elliptic curves in class 55055.p have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 55055.p do not have complex multiplication.Modular form 55055.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 55055.p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 55055.p1 | 55055q4 | \([1, -1, 0, -47999, 3865120]\) | \(6903498885921/374712065\) | \(663825280583465\) | \([2]\) | \(184320\) | \(1.6001\) | |
| 55055.p2 | 55055q2 | \([1, -1, 0, -8674, -232545]\) | \(40743095121/10144225\) | \(17971113385225\) | \([2, 2]\) | \(92160\) | \(1.2535\) | |
| 55055.p3 | 55055q1 | \([1, -1, 0, -8069, -276952]\) | \(32798729601/3185\) | \(5642421785\) | \([2]\) | \(46080\) | \(0.90693\) | \(\Gamma_0(N)\)-optimal |
| 55055.p4 | 55055q3 | \([1, -1, 0, 20971, -1495422]\) | \(575722725759/874680625\) | \(-1549550082705625\) | \([2]\) | \(184320\) | \(1.6001\) |