Properties

Label 55055.p
Number of curves $4$
Conductor $55055$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 55055.p have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55055.p do not have complex multiplication.

Modular form 55055.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + q^{5} + q^{7} - 3 q^{8} - 3 q^{9} + q^{10} - q^{13} + q^{14} - q^{16} + 6 q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 55055.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55055.p1 55055q4 \([1, -1, 0, -47999, 3865120]\) \(6903498885921/374712065\) \(663825280583465\) \([2]\) \(184320\) \(1.6001\)  
55055.p2 55055q2 \([1, -1, 0, -8674, -232545]\) \(40743095121/10144225\) \(17971113385225\) \([2, 2]\) \(92160\) \(1.2535\)  
55055.p3 55055q1 \([1, -1, 0, -8069, -276952]\) \(32798729601/3185\) \(5642421785\) \([2]\) \(46080\) \(0.90693\) \(\Gamma_0(N)\)-optimal
55055.p4 55055q3 \([1, -1, 0, 20971, -1495422]\) \(575722725759/874680625\) \(-1549550082705625\) \([2]\) \(184320\) \(1.6001\)