Properties

Label 546.g3
Conductor $546$
Discriminant $4368$
j-invariant \( \frac{38272753}{4368} \)
CM no
Rank $0$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy=x^3-7x-7\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz=x^3-7xz^2-7z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-9099x-299322\) Copy content Toggle raw display (homogenize, minimize)

sage: E = EllipticCurve([1, 0, 0, -7, -7])
 
gp: E = ellinit([1, 0, 0, -7, -7])
 
magma: E := EllipticCurve([1, 0, 0, -7, -7]);
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-2, 1\right) \) Copy content Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-2, 1\right) \) Copy content Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 546 \)  =  $2 \cdot 3 \cdot 7 \cdot 13$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $4368 $  =  $2^{4} \cdot 3 \cdot 7 \cdot 13 $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{38272753}{4368} \)  =  $2^{-4} \cdot 3^{-1} \cdot 7^{-1} \cdot 13^{-1} \cdot 337^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $-0.56917452640941281001884024555\dots$
Stable Faltings height: $-0.56917452640941281001884024555\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $0$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $1$
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Real period: $2.9547312603904991530188126999\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 4 $  = $ 2^{2}\cdot1\cdot1\cdot1 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L(E,1) $ ≈ $ 2.9547312603904991530188126999 $

Modular invariants

Modular form   546.2.a.g

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{2} + q^{3} + q^{4} + 2 q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + 2 q^{10} - 4 q^{11} + q^{12} - q^{13} + q^{14} + 2 q^{15} + q^{16} + 6 q^{17} + q^{18} - 4 q^{19} + O(q^{20}) \) Copy content Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 48
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_{4}$ Split multiplicative -1 1 4 4
$3$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$7$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$13$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.12.0.12
sage: gens = [[1369, 1368, 286, 1375], [1, 0, 8, 1], [2177, 8, 2176, 9], [1, 8, 0, 1], [628, 1, 335, 6], [1, 4, 4, 17], [736, 3, 733, 2], [848, 3, 1349, 2], [7, 6, 2178, 2179], [827, 822, 1370, 275]]
 
sage: GL(2,Integers(2184)).subgroup(gens)
 
magma: Gens := [[1369, 1368, 286, 1375], [1, 0, 8, 1], [2177, 8, 2176, 9], [1, 8, 0, 1], [628, 1, 335, 6], [1, 4, 4, 17], [736, 3, 733, 2], [848, 3, 1349, 2], [7, 6, 2178, 2179], [827, 822, 1370, 275]];
 
magma: sub<GL(2,Integers(2184))|Gens>;
 

The image of the adelic Galois representation has level $2184$, index $48$, genus $0$, and generators

$\left(\begin{array}{rr} 1369 & 1368 \\ 286 & 1375 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 2177 & 8 \\ 2176 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 628 & 1 \\ 335 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 736 & 3 \\ 733 & 2 \end{array}\right),\left(\begin{array}{rr} 848 & 3 \\ 1349 & 2 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2178 & 2179 \end{array}\right),\left(\begin{array}{rr} 827 & 822 \\ 1370 & 275 \end{array}\right)$

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

All $p$-adic regulators are identically $1$ since the rank is $0$.

Iwasawa invariants

$p$ 2 3 7 13
Reduction type split split split nonsplit
$\lambda$-invariant(s) 2 1 1 0
$\mu$-invariant(s) 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 546.g consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{273}) \) \(\Z/2\Z \oplus \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{-7}) \) \(\Z/4\Z\) 2.0.7.1-42588.2-l3
$2$ \(\Q(\sqrt{-39}) \) \(\Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-7}, \sqrt{-39})\) \(\Z/2\Z \oplus \Z/4\Z\) Not in database
$8$ deg 8 \(\Z/2\Z \oplus \Z/4\Z\) Not in database
$8$ 8.0.732955152384.5 \(\Z/8\Z\) Not in database
$8$ 8.0.706225947807744.3 \(\Z/8\Z\) Not in database
$8$ 8.2.194365577860272.8 \(\Z/6\Z\) Not in database
$16$ deg 16 \(\Z/4\Z \oplus \Z/4\Z\) Not in database
$16$ deg 16 \(\Z/2\Z \oplus \Z/8\Z\) Not in database
$16$ deg 16 \(\Z/2\Z \oplus \Z/8\Z\) Not in database
$16$ deg 16 \(\Z/2\Z \oplus \Z/6\Z\) Not in database
$16$ deg 16 \(\Z/12\Z\) Not in database
$16$ deg 16 \(\Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.