Learn more

Refine search


Results (42 matches)

  Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
546.g3 546.g \( 2 \cdot 3 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -7, -7]$ \(y^2+xy=x^3-7x-7\)
1638.d3 1638.d \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.414262525$ $[1, -1, 0, -63, 189]$ \(y^2+xy=x^3-x^2-63x+189\)
3822.t3 3822.t \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -344, 2057]$ \(y^2+xy+y=x^3+x^2-344x+2057\)
4368.k3 4368.k \( 2^{4} \cdot 3 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -112, 448]$ \(y^2=x^3-x^2-112x+448\)
7098.j3 7098.j \( 2 \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1187, -14194]$ \(y^2+xy+y=x^3-1187x-14194\)
11466.z3 11466.z \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -3096, -58640]$ \(y^2+xy=x^3-x^2-3096x-58640\)
13104.j3 13104.j \( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.996967870$ $[0, 0, 0, -1011, -11086]$ \(y^2=x^3-1011x-11086\)
13650.b3 13650.b \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z$ $3.234078668$ $[1, 1, 0, -175, -875]$ \(y^2+xy=x^3+x^2-175x-875\)
17472.m3 17472.m \( 2^{6} \cdot 3 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $4.072740421$ $[0, -1, 0, -449, -3135]$ \(y^2=x^3-x^2-449x-3135\)
17472.bv3 17472.bv \( 2^{6} \cdot 3 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -449, 3135]$ \(y^2=x^3+x^2-449x+3135\)
21294.ck3 21294.ck \( 2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/4\Z$ $3.102957560$ $[1, -1, 1, -10679, 383231]$ \(y^2+xy+y=x^3-x^2-10679x+383231\)
30576.cg3 30576.cg \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.229745798$ $[0, 1, 0, -5504, -142668]$ \(y^2=x^3+x^2-5504x-142668\)
40950.eb3 40950.eb \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -1580, 22047]$ \(y^2+xy+y=x^3-x^2-1580x+22047\)
49686.u3 49686.u \( 2 \cdot 3 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -58139, 4810317]$ \(y^2+xy=x^3+x^2-58139x+4810317\)
52416.fc3 52416.fc \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -4044, -88688]$ \(y^2=x^3-4044x-88688\)
52416.fg3 52416.fg \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -4044, 88688]$ \(y^2=x^3-4044x+88688\)
56784.h3 56784.h \( 2^{4} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.503545507$ $[0, -1, 0, -18984, 908400]$ \(y^2=x^3-x^2-18984x+908400\)
66066.bg3 66066.bg \( 2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -850, 8468]$ \(y^2+xy+y=x^3-850x+8468\)
91728.ep3 91728.ep \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.052300199$ $[0, 0, 0, -49539, 3802498]$ \(y^2=x^3-49539x+3802498\)
95550.dp3 95550.dp \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.114055309$ $[1, 0, 1, -8601, 274348]$ \(y^2+xy+y=x^3-8601x+274348\)
109200.ha3 109200.ha \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $5.191994994$ $[0, 1, 0, -2808, 50388]$ \(y^2=x^3+x^2-2808x+50388\)
122304.da3 122304.da \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $6.895143860$ $[0, -1, 0, -22017, -1119327]$ \(y^2=x^3-x^2-22017x-1119327\)
122304.hy3 122304.hy \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.722507485$ $[0, 1, 0, -22017, 1119327]$ \(y^2=x^3+x^2-22017x+1119327\)
149058.fc3 149058.fc \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -523256, -130401813]$ \(y^2+xy+y=x^3-x^2-523256x-130401813\)
157794.bq3 157794.bq \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -2029, -32365]$ \(y^2+xy+y=x^3+x^2-2029x-32365\)
170352.fn3 170352.fn \( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -170859, -24355942]$ \(y^2=x^3-170859x-24355942\)
177450.ht3 177450.ht \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $7.794191721$ $[1, 1, 1, -29663, -1774219]$ \(y^2+xy+y=x^3+x^2-29663x-1774219\)
197106.k3 197106.k \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2534, 42948]$ \(y^2+xy=x^3+x^2-2534x+42948\)
198198.db3 198198.db \( 2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.199110633$ $[1, -1, 1, -7646, -228643]$ \(y^2+xy+y=x^3-x^2-7646x-228643\)
227136.df3 227136.df \( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $12.16615825$ $[0, -1, 0, -75937, -7191263]$ \(y^2=x^3-x^2-75937x-7191263\)
227136.iv3 227136.iv \( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -75937, 7191263]$ \(y^2=x^3+x^2-75937x+7191263\)
286650.pw3 286650.pw \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -77405, -7407403]$ \(y^2+xy+y=x^3-x^2-77405x-7407403\)
288834.bx3 288834.bx \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -3714, 77748]$ \(y^2+xy=x^3-3714x+77748\)
327600.ii3 327600.ii \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $3.133498606$ $[0, 0, 0, -25275, -1385750]$ \(y^2=x^3-25275x-1385750\)
366912.cy3 366912.cy \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.291934137$ $[0, 0, 0, -198156, -30419984]$ \(y^2=x^3-198156x-30419984\)
366912.et3 366912.et \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -198156, 30419984]$ \(y^2=x^3-198156x+30419984\)
397488.ir3 397488.ir \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -930232, -309720748]$ \(y^2=x^3+x^2-930232x-309720748\)
436800.fz3 436800.fz \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $4.248142068$ $[0, -1, 0, -11233, 414337]$ \(y^2=x^3-x^2-11233x+414337\)
436800.oa3 436800.oa \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -11233, -414337]$ \(y^2=x^3+x^2-11233x-414337\)
459186.r3 459186.r \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -5904, -158928]$ \(y^2+xy=x^3+x^2-5904x-158928\)
462462.r3 462462.r \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.021740956$ $[1, 1, 0, -41626, -2946236]$ \(y^2+xy=x^3+x^2-41626x-2946236\)
473382.bs3 473382.bs \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $2$ $\Z/2\Z$ $5.362342512$ $[1, -1, 0, -18261, 855589]$ \(y^2+xy=x^3-x^2-18261x+855589\)
  Download to