Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 546.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
546.g1 | 546g3 | \([1, 0, 0, -417, 3243]\) | \(8020417344913/187278\) | \(187278\) | \([2]\) | \(192\) | \(0.12397\) | |
546.g2 | 546g2 | \([1, 0, 0, -27, 45]\) | \(2181825073/298116\) | \(298116\) | \([2, 2]\) | \(96\) | \(-0.22260\) | |
546.g3 | 546g1 | \([1, 0, 0, -7, -7]\) | \(38272753/4368\) | \(4368\) | \([2]\) | \(48\) | \(-0.56917\) | \(\Gamma_0(N)\)-optimal |
546.g4 | 546g4 | \([1, 0, 0, 43, 255]\) | \(8780064047/32388174\) | \(-32388174\) | \([2]\) | \(192\) | \(0.12397\) |
Rank
sage: E.rank()
The elliptic curves in class 546.g have rank \(0\).
Complex multiplication
The elliptic curves in class 546.g do not have complex multiplication.Modular form 546.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.