Properties

Label 5440l
Number of curves $4$
Conductor $5440$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5440l have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5440l do not have complex multiplication.

Modular form 5440.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{5} + 2 q^{7} + q^{9} - 6 q^{11} - 2 q^{13} + 2 q^{15} + q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 5440l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5440.w2 5440l1 \([0, -1, 0, -163425, 25482977]\) \(1841373668746009/31443200\) \(8242646220800\) \([2]\) \(30720\) \(1.6079\) \(\Gamma_0(N)\)-optimal
5440.w3 5440l2 \([0, -1, 0, -158305, 27149025]\) \(-1673672305534489/241375690000\) \(-63275188879360000\) \([2]\) \(61440\) \(1.9545\)  
5440.w1 5440l3 \([0, -1, 0, -266785, -10343775]\) \(8010684753304969/4456448000000\) \(1168231104512000000\) \([2]\) \(92160\) \(2.1572\)  
5440.w4 5440l4 \([0, -1, 0, 1043935, -82957663]\) \(479958568556831351/289000000000000\) \(-75759616000000000000\) \([2]\) \(184320\) \(2.5038\)