Properties

Label 54150cs
Number of curves $1$
Conductor $54150$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 54150cs1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 54150cs do not have complex multiplication.

Modular form 54150.2.a.cs

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} + 4 q^{7} + q^{8} + q^{9} - q^{11} + q^{12} + 4 q^{14} + q^{16} + 8 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 54150cs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
54150.cu1 54150cs1 \([1, 0, 0, -4630013, -3995539983]\) \(-23891790625/1181952\) \(-543027081442500000000\) \([]\) \(3456000\) \(2.7400\) \(\Gamma_0(N)\)-optimal