Properties

Label 54080.dg
Number of curves $4$
Conductor $54080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 54080.dg have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 54080.dg do not have complex multiplication.

Modular form 54080.2.a.dg

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{5} + 4 q^{7} + q^{9} - 6 q^{11} + 2 q^{15} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 54080.dg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
54080.dg1 54080bn3 \([0, -1, 0, -2244545, -1241615935]\) \(988345570681/44994560\) \(56932472496859381760\) \([2]\) \(2322432\) \(2.5526\)  
54080.dg2 54080bn1 \([0, -1, 0, -351745, 79937025]\) \(3803721481/26000\) \(32898294480896000\) \([2]\) \(774144\) \(2.0033\) \(\Gamma_0(N)\)-optimal
54080.dg3 54080bn2 \([0, -1, 0, -135425, 176978177]\) \(-217081801/10562500\) \(-13364932132864000000\) \([2]\) \(1548288\) \(2.3499\)  
54080.dg4 54080bn4 \([0, -1, 0, 1216575, -4728348223]\) \(157376536199/7722894400\) \(-9771925162156254822400\) \([2]\) \(4644864\) \(2.8992\)