Properties

Label 52800gr
Number of curves $4$
Conductor $52800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 52800gr have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 52800gr do not have complex multiplication.

Modular form 52800.2.a.gr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + q^{11} + 2 q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 52800gr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
52800.fr3 52800gr1 \([0, 1, 0, -1233, 15663]\) \(810448/33\) \(8448000000\) \([2]\) \(32768\) \(0.67056\) \(\Gamma_0(N)\)-optimal
52800.fr2 52800gr2 \([0, 1, 0, -3233, -50337]\) \(3650692/1089\) \(1115136000000\) \([2, 2]\) \(65536\) \(1.0171\)  
52800.fr4 52800gr3 \([0, 1, 0, 8767, -326337]\) \(36382894/43923\) \(-89954304000000\) \([2]\) \(131072\) \(1.3637\)  
52800.fr1 52800gr4 \([0, 1, 0, -47233, -3966337]\) \(5690357426/891\) \(1824768000000\) \([2]\) \(131072\) \(1.3637\)