Learn more

Refine search


Results (1-50 of 460 matches)

Next   Download to        
Curve Isogeny class
LMFDB label Cremona label LMFDB label Cremona label Weierstrass coefficients Rank Torsion structure
52800.a1 52800w1 52800.a 52800w $[0, -1, 0, 47, -143]$ $1$ trivial
52800.b1 52800fv1 52800.b 52800fv $[0, -1, 0, 1167, 15537]$ $2$ trivial
52800.c1 52800ep4 52800.c 52800ep $[0, -1, 0, -155633, 12889137]$ $0$ $[2]$
52800.c2 52800ep2 52800.c 52800ep $[0, -1, 0, -71633, -7354863]$ $0$ $[2]$
52800.c3 52800ep1 52800.c 52800ep $[0, -1, 0, -4133, -132363]$ $0$ $[2]$
52800.c4 52800ep3 52800.c 52800ep $[0, -1, 0, 31867, 1451637]$ $0$ $[2]$
52800.d1 52800v4 52800.d 52800v $[0, -1, 0, -234433, 43724737]$ $1$ $[2]$
52800.d2 52800v2 52800.d 52800v $[0, -1, 0, -18433, 308737]$ $1$ $[2, 2]$
52800.d3 52800v1 52800.d 52800v $[0, -1, 0, -10433, -403263]$ $1$ $[2]$
52800.d4 52800v3 52800.d 52800v $[0, -1, 0, 69567, 2332737]$ $1$ $[2]$
52800.e1 52800u4 52800.e 52800u $[0, -1, 0, -1056033, -417348063]$ $1$ $[2]$
52800.e2 52800u2 52800.e 52800u $[0, -1, 0, -66033, -6498063]$ $1$ $[2, 2]$
52800.e3 52800u3 52800.e 52800u $[0, -1, 0, -44033, -10920063]$ $1$ $[2]$
52800.e4 52800u1 52800.e 52800u $[0, -1, 0, -5533, -24563]$ $1$ $[2]$
52800.f1 52800ff4 52800.f 52800ff $[0, -1, 0, -3152033, 2122175937]$ $1$ $[2]$
52800.f2 52800ff2 52800.f 52800ff $[0, -1, 0, -402033, -47574063]$ $1$ $[2, 2]$
52800.f3 52800ff1 52800.f 52800ff $[0, -1, 0, -341533, -76674563]$ $1$ $[2]$
52800.f4 52800ff3 52800.f 52800ff $[0, -1, 0, 1379967, -355860063]$ $1$ $[2]$
52800.g1 52800bl4 52800.g 52800bl $[0, -1, 0, -2932649633, -61122719728863]$ $0$ $[2]$
52800.g2 52800bl2 52800.g 52800bl $[0, -1, 0, -195497633, -820524016863]$ $0$ $[2, 2]$
52800.g3 52800bl1 52800.g 52800bl $[0, -1, 0, -64425633, 188075023137]$ $0$ $[2]$
52800.g4 52800bl3 52800.g 52800bl $[0, -1, 0, 444502367, -5070764016863]$ $0$ $[2]$
52800.h1 52800bk4 52800.h 52800bk $[0, -1, 0, -161633, -23704863]$ $0$ $[2]$
52800.h2 52800bk2 52800.h 52800bk $[0, -1, 0, -29633, 1507137]$ $0$ $[2, 2]$
52800.h3 52800bk1 52800.h 52800bk $[0, -1, 0, -27633, 1777137]$ $0$ $[2]$
52800.h4 52800bk3 52800.h 52800bk $[0, -1, 0, 70367, 9407137]$ $0$ $[2]$
52800.i1 52800fe4 52800.i 52800fe $[0, -1, 0, -36033, -2616063]$ $1$ $[2]$
52800.i2 52800fe2 52800.i 52800fe $[0, -1, 0, -3033, -9063]$ $1$ $[2, 2]$
52800.i3 52800fe1 52800.i 52800fe $[0, -1, 0, -1908, 32562]$ $1$ $[2]$
52800.i4 52800fe3 52800.i 52800fe $[0, -1, 0, 11967, -84063]$ $1$ $[2]$
52800.j1 52800bm1 52800.j 52800bm $[0, -1, 0, -112408, -14468438]$ $0$ $[2]$
52800.j2 52800bm2 52800.j 52800bm $[0, -1, 0, -111033, -14841063]$ $0$ $[2]$
52800.k1 52800r1 52800.k 52800r $[0, -1, 0, -5208, 165162]$ $1$ trivial
52800.l1 52800fl1 52800.l 52800fl $[0, -1, 0, -54503083, -154856263463]$ $1$ trivial
52800.m1 52800p1 52800.m 52800p $[0, -1, 0, -33, 4257]$ $1$ trivial
52800.n1 52800o1 52800.n 52800o $[0, -1, 0, -12320833, -17201350463]$ $1$ trivial
52800.o1 52800q1 52800.o 52800q $[0, -1, 0, 72, 162]$ $1$ trivial
52800.p1 52800ca1 52800.p 52800ca $[0, -1, 0, 1792, -23838]$ $1$ trivial
52800.q1 52800ft1 52800.q 52800ft $[0, -1, 0, -492833, 137807937]$ $0$ trivial
52800.r1 52800fu1 52800.r 52800fu $[0, -1, 0, -833, -530463]$ $0$ trivial
52800.s1 52800fd1 52800.s 52800fd $[0, -1, 0, -2180123, 1239722157]$ $1$ trivial
52800.t1 52800bz1 52800.t 52800bz $[0, -1, 0, -208, -1238]$ $1$ trivial
52800.u1 52800ek1 52800.u 52800ek $[0, -1, 0, -13133, -573363]$ $2$ $[2]$
52800.u2 52800ek2 52800.u 52800ek $[0, -1, 0, -7633, -1062863]$ $2$ $[2]$
52800.v1 52800ej1 52800.v 52800ej $[0, -1, 0, -353, 2817]$ $2$ trivial
52800.w1 52800eh1 52800.w 52800eh $[0, -1, 0, -893133, -321729363]$ $0$ $[2]$
52800.w2 52800eh2 52800.w 52800eh $[0, -1, 0, -227633, -790906863]$ $0$ $[2]$
52800.x1 52800ei1 52800.x 52800ei $[0, -1, 0, -801633, 276523137]$ $0$ $[2]$
52800.x2 52800ei2 52800.x 52800ei $[0, -1, 0, -797633, 279415137]$ $0$ $[2]$
52800.y1 52800l1 52800.y 52800l $[0, -1, 0, -36993, 2807937]$ $1$ trivial
Next   Download to