Properties

Label 52800eg
Number of curves $4$
Conductor $52800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 52800eg have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 52800eg do not have complex multiplication.

Modular form 52800.2.a.eg

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{7} + q^{9} - q^{11} - 4 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 52800eg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
52800.cv3 52800eg1 \([0, -1, 0, -8833, -298463]\) \(18609625/1188\) \(4866048000000\) \([2]\) \(110592\) \(1.1851\) \(\Gamma_0(N)\)-optimal
52800.cv4 52800eg2 \([0, -1, 0, 7167, -1274463]\) \(9938375/176418\) \(-722608128000000\) \([2]\) \(221184\) \(1.5316\)  
52800.cv1 52800eg3 \([0, -1, 0, -128833, 17773537]\) \(57736239625/255552\) \(1046740992000000\) \([2]\) \(331776\) \(1.7344\)  
52800.cv2 52800eg4 \([0, -1, 0, -64833, 35373537]\) \(-7357983625/127552392\) \(-522454597632000000\) \([2]\) \(663552\) \(2.0809\)