Properties

Label 52800.t
Number of curves $1$
Conductor $52800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 52800.t1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 52800.t do not have complex multiplication.

Modular form 52800.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{7} + q^{9} + q^{11} + 4 q^{13} - 3 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 52800.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
52800.t1 52800bz1 \([0, -1, 0, -208, -1238]\) \(-25000000/3993\) \(-159720000\) \([]\) \(18432\) \(0.30215\) \(\Gamma_0(N)\)-optimal