Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2+15967x-355137\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z+15967xz^2-355137z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+1293300x-262774800\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1419/25, 107328/125)$ | $5.8381266384046632236507052300$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 52800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-316639150080000$ | = | $-1 \cdot 2^{20} \cdot 3 \cdot 5^{4} \cdot 11^{5} $ |
|
j-invariant: | $j$ | = | \( \frac{2747555975}{1932612} \) | = | $2^{-2} \cdot 3^{-1} \cdot 5^{2} \cdot 11^{-5} \cdot 479^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4708921595903999512592556142$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.10530791539421813773351234573$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9936024056521444$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.738034066959818$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.8381266384046632236507052300$ |
|
Real period: | $\Omega$ | ≈ | $0.30659569865331229377089947090$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.1597780621127649318850368294 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.159778062 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.306596 \cdot 5.838127 \cdot 4}{1^2} \\ & \approx 7.159778062\end{aligned}$$
Modular invariants
Modular form 52800.2.a.eh
For more coefficients, see the Downloads section to the right.
Modular degree: | 230400 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{10}^{*}$ | additive | 1 | 6 | 20 | 2 |
$3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
$11$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.4.2 | 5.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 659 & 0 \\ 0 & 1319 \end{array}\right),\left(\begin{array}{rr} 987 & 1310 \\ 1300 & 791 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 1265 & 1201 \end{array}\right),\left(\begin{array}{rr} 1314 & 1307 \\ 715 & 779 \end{array}\right),\left(\begin{array}{rr} 606 & 5 \\ 595 & 656 \end{array}\right),\left(\begin{array}{rr} 1311 & 10 \\ 1310 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 669 & 1310 \\ 670 & 1309 \end{array}\right),\left(\begin{array}{rr} 1314 & 1315 \\ 1105 & 664 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 325 & 656 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$9732096000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
$3$ | split multiplicative | $4$ | \( 17600 = 2^{6} \cdot 5^{2} \cdot 11 \) |
$5$ | additive | $14$ | \( 192 = 2^{6} \cdot 3 \) |
$11$ | nonsplit multiplicative | $12$ | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 52800.eh
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 1650.a2, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.3300.1 | \(\Z/2\Z\) | not in database |
$4$ | 4.0.8000.2 | \(\Z/5\Z\) | not in database |
$6$ | 6.0.1437480000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$10$ | 10.2.167961600000000000.3 | \(\Z/5\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | add | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 2 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.