Learn more

Refine search


Results (32 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
1650.a2 1650.a \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.066646901$ $[1, 1, 0, 250, -600]$ \(y^2+xy=x^3+x^2+250x-600\) 5.24.0-5.a.2.1, 132.2.0.?, 660.48.1.? $[(70, 570)]$
1650.s2 1650.s \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 6237, -87483]$ \(y^2+xy=x^3+6237x-87483\) 5.24.0-5.a.2.2, 132.2.0.?, 660.48.1.? $[ ]$
4950.r2 4950.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 56133, 2362041]$ \(y^2+xy=x^3-x^2+56133x+2362041\) 5.12.0.a.2, 15.24.0-5.a.2.1, 132.2.0.?, 220.24.0.?, 660.48.1.? $[ ]$
4950.z2 4950.z \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 2245, 18447]$ \(y^2+xy+y=x^3-x^2+2245x+18447\) 5.12.0.a.2, 15.24.0-5.a.2.2, 132.2.0.?, 220.24.0.?, 660.48.1.? $[ ]$
13200.d2 13200.d \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 99792, 5598912]$ \(y^2=x^3-x^2+99792x+5598912\) 5.12.0.a.2, 20.24.0-5.a.2.2, 132.2.0.?, 330.24.0.?, 660.48.1.? $[ ]$
13200.cq2 13200.cq \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 3992, 46388]$ \(y^2=x^3+x^2+3992x+46388\) 5.12.0.a.2, 20.24.0-5.a.2.1, 132.2.0.?, 330.24.0.?, 660.48.1.? $[ ]$
18150.bb2 18150.bb \( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $7.351637277$ $[1, 0, 1, 754674, 117194548]$ \(y^2+xy+y=x^3+754674x+117194548\) 5.12.0.a.2, 55.24.0-5.a.2.1, 60.24.0-5.a.2.4, 132.2.0.?, 660.48.1.? $[(679/5, 1465123/5)]$
18150.cj2 18150.cj \( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 30187, 949631]$ \(y^2+xy+y=x^3+x^2+30187x+949631\) 5.12.0.a.2, 55.24.0-5.a.2.2, 60.24.0-5.a.2.3, 132.2.0.?, 660.48.1.? $[ ]$
39600.x2 39600.x \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 898125, -152068750]$ \(y^2=x^3+898125x-152068750\) 5.12.0.a.2, 60.24.0-5.a.2.2, 110.24.0.?, 132.2.0.?, 660.48.1.? $[ ]$
39600.el2 39600.el \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.608728603$ $[0, 0, 0, 35925, -1216550]$ \(y^2=x^3+35925x-1216550\) 5.12.0.a.2, 60.24.0-5.a.2.1, 110.24.0.?, 132.2.0.?, 660.48.1.? $[(119, 2178)]$
52800.dk2 52800.dk \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $8.892550924$ $[0, -1, 0, 399167, -45190463]$ \(y^2=x^3-x^2+399167x-45190463\) 5.12.0.a.2, 40.24.0-5.a.2.3, 132.2.0.?, 660.24.1.?, 1320.48.1.? $[(64577/7, 18046272/7)]$
52800.dr2 52800.dr \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 15967, 355137]$ \(y^2=x^3-x^2+15967x+355137\) 5.12.0.a.2, 40.24.0-5.a.2.2, 132.2.0.?, 660.24.1.?, 1320.48.1.? $[ ]$
52800.eh2 52800.eh \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $5.838126638$ $[0, 1, 0, 15967, -355137]$ \(y^2=x^3+x^2+15967x-355137\) 5.12.0.a.2, 40.24.0-5.a.2.4, 132.2.0.?, 660.24.1.?, 1320.48.1.? $[(1419/5, 107328/5)]$
52800.ei2 52800.ei \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 399167, 45190463]$ \(y^2=x^3+x^2+399167x+45190463\) 5.12.0.a.2, 40.24.0-5.a.2.1, 132.2.0.?, 660.24.1.?, 1320.48.1.? $[ ]$
54450.dd2 54450.dd \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 271683, -25368359]$ \(y^2+xy=x^3-x^2+271683x-25368359\) 5.12.0.a.2, 20.24.0-5.a.2.3, 132.2.0.?, 165.24.0.?, 660.48.1.? $[ ]$
54450.ek2 54450.ek \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) $2$ $\mathsf{trivial}$ $6.089612981$ $[1, -1, 1, 6792070, -3164252803]$ \(y^2+xy+y=x^3-x^2+6792070x-3164252803\) 5.12.0.a.2, 20.24.0-5.a.2.4, 132.2.0.?, 165.24.0.?, 660.48.1.? $[(3633, 261721), (993, 67021)]$
80850.dd2 80850.dd \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $1.553106800$ $[1, 0, 1, 12224, 242498]$ \(y^2+xy+y=x^3+12224x+242498\) 5.12.0.a.2, 35.24.0-5.a.2.1, 132.2.0.?, 660.24.1.?, 4620.48.1.? $[(-9, 367)]$
80850.en2 80850.en \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 305612, 30312281]$ \(y^2+xy+y=x^3+x^2+305612x+30312281\) 5.12.0.a.2, 35.24.0-5.a.2.2, 132.2.0.?, 660.24.1.?, 4620.48.1.? $[ ]$
145200.eo2 145200.eo \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $16.33081290$ $[0, -1, 0, 12074792, -7500451088]$ \(y^2=x^3-x^2+12074792x-7500451088\) 5.12.0.a.2, 30.24.0-5.a.2.1, 132.2.0.?, 220.24.0.?, 660.48.1.? $[(916795394/1225, 18765828812478/1225)]$
145200.gn2 145200.gn \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.642154086$ $[0, 1, 0, 482992, -59810412]$ \(y^2=x^3+x^2+482992x-59810412\) 5.12.0.a.2, 30.24.0-5.a.2.2, 132.2.0.?, 220.24.0.?, 660.48.1.? $[(14572/3, 1903330/3)]$
158400.bs2 158400.bs \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $9.270313828$ $[0, 0, 0, 3592500, -1216550000]$ \(y^2=x^3+3592500x-1216550000\) 5.12.0.a.2, 120.24.0.?, 132.2.0.?, 440.24.0.?, 660.24.1.?, $\ldots$ $[(53024/5, 15783732/5)]$
158400.cu2 158400.cu \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $2$ $\mathsf{trivial}$ $0.254135959$ $[0, 0, 0, 143700, 9732400]$ \(y^2=x^3+143700x+9732400\) 5.12.0.a.2, 120.24.0.?, 132.2.0.?, 440.24.0.?, 660.24.1.?, $\ldots$ $[(950, 31680), (-40, 1980)]$
158400.mu2 158400.mu \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 143700, -9732400]$ \(y^2=x^3+143700x-9732400\) 5.12.0.a.2, 120.24.0.?, 132.2.0.?, 440.24.0.?, 660.24.1.?, $\ldots$ $[ ]$
158400.nb2 158400.nb \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $2.314285215$ $[0, 0, 0, 3592500, 1216550000]$ \(y^2=x^3+3592500x+1216550000\) 5.12.0.a.2, 120.24.0.?, 132.2.0.?, 440.24.0.?, 660.24.1.?, $\ldots$ $[(526, 57024)]$
242550.l2 242550.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $10.33703166$ $[1, -1, 0, 2750508, -815681084]$ \(y^2+xy=x^3-x^2+2750508x-815681084\) 5.12.0.a.2, 105.24.0.?, 132.2.0.?, 660.24.1.?, 1540.24.0.?, $\ldots$ $[(107984/5, 37569442/5)]$
242550.kw2 242550.kw \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $3.074200764$ $[1, -1, 1, 110020, -6547453]$ \(y^2+xy+y=x^3-x^2+110020x-6547453\) 5.12.0.a.2, 105.24.0.?, 132.2.0.?, 660.24.1.?, 1540.24.0.?, $\ldots$ $[(69, 1135)]$
278850.co2 278850.co \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $25.79792589$ $[1, 0, 1, 1054049, -193254202]$ \(y^2+xy+y=x^3+1054049x-193254202\) 5.12.0.a.2, 65.24.0-5.a.2.1, 132.2.0.?, 660.24.1.?, 8580.48.1.? $[(768, 32317), (4039/3, 513434/3)]$
278850.gm2 278850.gm \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $12.55889927$ $[1, 1, 1, 42162, -1529169]$ \(y^2+xy+y=x^3+x^2+42162x-1529169\) 5.12.0.a.2, 65.24.0-5.a.2.2, 132.2.0.?, 660.24.1.?, 8580.48.1.? $[(3157071/70, 5766741021/70)]$
435600.ea2 435600.ea \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $5.790443546$ $[0, 0, 0, 4346925, 1619228050]$ \(y^2=x^3+4346925x+1619228050\) 5.12.0.a.2, 10.24.0-5.a.2.1, 132.2.0.?, 660.48.1.? $[(599, 66618)]$
435600.qq2 435600.qq \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 108673125, 202403506250]$ \(y^2=x^3+108673125x+202403506250\) 5.12.0.a.2, 10.24.0-5.a.2.2, 132.2.0.?, 660.48.1.? $[ ]$
476850.fk2 476850.fk \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $20.16244880$ $[1, 0, 1, 72099, -3452852]$ \(y^2+xy+y=x^3+72099x-3452852\) 5.12.0.a.2, 85.24.0.?, 132.2.0.?, 660.24.1.?, 11220.48.1.? $[(716766649/805, 19436537558222/805)]$
476850.gd2 476850.gd \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 1802487, -431606469]$ \(y^2+xy+y=x^3+x^2+1802487x-431606469\) 5.12.0.a.2, 85.24.0.?, 132.2.0.?, 660.24.1.?, 11220.48.1.? $[ ]$
  displayed columns for results