Properties

Label 5200.i
Number of curves $2$
Conductor $5200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5200.i have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 5 T + 7 T^{2}\) 1.7.af
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5200.i do not have complex multiplication.

Modular form 5200.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + 5 q^{7} + q^{9} + 3 q^{11} - q^{13} - 3 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5200.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5200.i1 5200t2 \([0, 1, 0, -181288, 29649588]\) \(-6434774386429585/140608\) \(-14398259200\) \([]\) \(25920\) \(1.4755\)  
5200.i2 5200t1 \([0, 1, 0, -2088, 45748]\) \(-9836106385/3407872\) \(-348966092800\) \([]\) \(8640\) \(0.92623\) \(\Gamma_0(N)\)-optimal