Show commands: SageMath
Rank
The elliptic curves in class 496.d have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 496.d do not have complex multiplication.Modular form 496.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 496.d
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 496.d1 | 496d1 | \([0, -1, 0, -2, -1]\) | \(-87808/31\) | \(-496\) | \([]\) | \(24\) | \(-0.77176\) | \(\Gamma_0(N)\)-optimal |
| 496.d2 | 496d2 | \([0, -1, 0, 18, 11]\) | \(38112512/29791\) | \(-476656\) | \([]\) | \(72\) | \(-0.22246\) |