Properties

Label 49343c
Number of curves $1$
Conductor $49343$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 49343c1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(7\)\(1\)
\(19\)\(1 - T\)
\(53\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 49343c do not have complex multiplication.

Modular form 49343.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} + 3 q^{5} - 3 q^{9} + 6 q^{10} + 3 q^{11} - 4 q^{16} + 3 q^{17} - 6 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 49343c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
49343.c1 49343c1 \([0, 0, 1, 2989, 35929]\) \(25102282752/19266931\) \(-2266735165219\) \([]\) \(104328\) \(1.0589\) \(\Gamma_0(N)\)-optimal