Properties

Label 45760.by
Number of curves $1$
Conductor $45760$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("by1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 45760.by1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 45760.by do not have complex multiplication.

Modular form 45760.2.a.by

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{3} - q^{5} - 3 q^{7} + 6 q^{9} - q^{11} - q^{13} - 3 q^{15} - q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 45760.by

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
45760.by1 45760b1 \([0, 0, 0, -195628, 67848752]\) \(-3158470573163361/5758438400000\) \(-1509540075929600000\) \([]\) \(1198080\) \(2.1783\) \(\Gamma_0(N)\)-optimal