Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3+x^2+360x+11988\) | (homogenize, simplify) | 
| \(y^2z=x^3+x^2z+360xz^2+11988z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3+29133x+8651826\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(6, 120)$ | $0.21337998219511602845504834113$ | $\infty$ | 
| $(-18, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-18, 0\right) \), \((-12,\pm 78)\), \((-9,\pm 90)\), \((6,\pm 120)\), \((36,\pm 270)\), \((126,\pm 1440)\), \((198,\pm 2808)\), \((3156,\pm 177330)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 4560 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 19$ |  | 
| Discriminant: | $\Delta$ | = | $-63825408000$ | = | $-1 \cdot 2^{12} \cdot 3^{8} \cdot 5^{3} \cdot 19 $ |  | 
| j-invariant: | $j$ | = | \( \frac{1256216039}{15582375} \) | = | $3^{-8} \cdot 5^{-3} \cdot 13^{3} \cdot 19^{-1} \cdot 83^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.75413885482685399943231616098$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.060991674266908690015084039522$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.9487490541305785$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.832173465573506$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.21337998219511602845504834113$ |  | 
| Real period: | $\Omega$ | ≈ | $0.81614517334448583304444730401$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ 2^{2}\cdot2^{3}\cdot3\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $4.1795770213650305212802935111 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 4.179577021 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.816145 \cdot 0.213380 \cdot 96}{2^2} \\ & \approx 4.179577021\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4608 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 | 
| $3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 | 
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 | 
| $19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 8.12.0.6 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 760 = 2^{3} \cdot 5 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 99 & 98 \\ 298 & 675 \end{array}\right),\left(\begin{array}{rr} 308 & 1 \\ 631 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 753 & 8 \\ 752 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 754 & 755 \end{array}\right),\left(\begin{array}{rr} 168 & 3 \\ 485 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 471 & 472 \\ 82 & 465 \end{array}\right)$.
The torsion field $K:=\Q(E[760])$ is a degree-$1891123200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 95 = 5 \cdot 19 \) | 
| $3$ | split multiplicative | $4$ | \( 304 = 2^{4} \cdot 19 \) | 
| $5$ | split multiplicative | $6$ | \( 912 = 2^{4} \cdot 3 \cdot 19 \) | 
| $19$ | split multiplicative | $20$ | \( 240 = 2^{4} \cdot 3 \cdot 5 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 4560.w
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 285.c4, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-95}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{19}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-5}, \sqrt{19})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | 4.2.548720.1 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.0.11761470250000.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.1444000000.7 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.0.7527340960000.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | 8.2.5910009391872.2 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/16\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | split | ord | ord | ord | ord | split | ord | ord | ss | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 4 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
