Properties

Label 455.a
Number of curves $4$
Conductor $455$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 455.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 455.a do not have complex multiplication.

Modular form 455.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + q^{5} - q^{7} + 3 q^{8} - 3 q^{9} - q^{10} + q^{13} + q^{14} - q^{16} - 6 q^{17} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 455.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
455.a1 455b3 \([1, -1, 1, -397, -2796]\) \(6903498885921/374712065\) \(374712065\) \([2]\) \(128\) \(0.40113\)  
455.a2 455b2 \([1, -1, 1, -72, 194]\) \(40743095121/10144225\) \(10144225\) \([2, 2]\) \(64\) \(0.054555\)  
455.a3 455b1 \([1, -1, 1, -67, 226]\) \(32798729601/3185\) \(3185\) \([4]\) \(32\) \(-0.29202\) \(\Gamma_0(N)\)-optimal
455.a4 455b4 \([1, -1, 1, 173, 1076]\) \(575722725759/874680625\) \(-874680625\) \([4]\) \(128\) \(0.40113\)