Properties

Label 41876c
Number of curves $2$
Conductor $41876$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 41876c have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(19\)\(1\)
\(29\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 41876c do not have complex multiplication.

Modular form 41876.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} - 4 q^{7} - 2 q^{9} + 3 q^{11} - 5 q^{13} - 3 q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 41876c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
41876.d1 41876c1 \([0, -1, 0, -1564, -36568]\) \(-35152/29\) \(-349268620544\) \([]\) \(55296\) \(0.91290\) \(\Gamma_0(N)\)-optimal
41876.d2 41876c2 \([0, -1, 0, 12876, 598792]\) \(19600688/24389\) \(-293734909877504\) \([]\) \(165888\) \(1.4622\)