Properties

Label 41600bx
Number of curves $1$
Conductor $41600$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 41600bx1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 41600bx do not have complex multiplication.

Modular form 41600.2.a.bx

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2 q^{9} + q^{13} + 7 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 41600bx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
41600.v1 41600bx1 \([0, -1, 0, -4633, -119863]\) \(-85939808/13\) \(-1664000000\) \([]\) \(26880\) \(0.78216\) \(\Gamma_0(N)\)-optimal