Properties

Label 41574.n
Number of curves $1$
Conductor $41574$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 41574.n1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(13\)\(1\)
\(41\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 5 T + 7 T^{2}\) 1.7.af
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 41574.n do not have complex multiplication.

Modular form 41574.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} + 5 q^{7} + q^{8} + q^{9} - q^{12} + 5 q^{14} + q^{16} - 4 q^{17} + q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 41574.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
41574.n1 41574k1 \([1, 1, 1, -43898, -3558391]\) \(-55356908515533625/538002\) \(-90922338\) \([]\) \(129792\) \(1.1047\) \(\Gamma_0(N)\)-optimal