Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2+27x-59\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z+27xz^2-59z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+429x-3346\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(5, 11)$ | $0.47700350602872523535084478047$ | $\infty$ |
| $(2, -1)$ | $0$ | $2$ |
Integral points
\( \left(2, -1\right) \), \( \left(3, 5\right) \), \( \left(3, -8\right) \), \( \left(5, 11\right) \), \( \left(5, -16\right) \), \( \left(14, 47\right) \), \( \left(14, -61\right) \), \( \left(38, 215\right) \), \( \left(38, -253\right) \)
Invariants
| Conductor: | $N$ | = | \( 414 \) | = | $2 \cdot 3^{2} \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $-2414448$ | = | $-1 \cdot 2^{4} \cdot 3^{8} \cdot 23 $ |
|
| j-invariant: | $j$ | = | \( \frac{2924207}{3312} \) | = | $2^{-4} \cdot 3^{-2} \cdot 11^{3} \cdot 13^{3} \cdot 23^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.088826782848700613719608497073$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.63813292718275545941723111553$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.898775602359137$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.564667338452668$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.47700350602872523535084478047$ |
|
| Real period: | $\Omega$ | ≈ | $1.3905616429349908483334858391$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $1.3266055580581099503923039973 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.326605558 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.390562 \cdot 0.477004 \cdot 8}{2^2} \\ & \approx 1.326605558\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 64 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $23$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 552 = 2^{3} \cdot 3 \cdot 23 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 307 & 486 \\ 258 & 163 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 546 & 547 \end{array}\right),\left(\begin{array}{rr} 73 & 72 \\ 174 & 79 \end{array}\right),\left(\begin{array}{rr} 367 & 0 \\ 0 & 551 \end{array}\right),\left(\begin{array}{rr} 40 & 3 \\ 117 & 370 \end{array}\right),\left(\begin{array}{rr} 545 & 8 \\ 544 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[552])$ is a degree-$410370048$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/552\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 207 = 3^{2} \cdot 23 \) |
| $3$ | additive | $8$ | \( 46 = 2 \cdot 23 \) |
| $23$ | split multiplicative | $24$ | \( 18 = 2 \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 414.a
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 138.c4, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-23}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{69}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/4\Z\) | 2.0.3.1-6348.1-b1 |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-23})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.3069672194304.13 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.49114755108864.14 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.175509504.2 | \(\Z/8\Z\) | not in database |
| $8$ | 8.2.793167898032.4 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | ord | ss | ss | ord | ord | ord | split | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 2 | - | 1 | 1,1 | 1,1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.