Learn more

Refine search


Results (1-50 of 60 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
138.c4 138.c \( 2 \cdot 3 \cdot 23 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, 3, 3]$ \(y^2+xy+y=x^3+x^2+3x+3\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.p.1.1, 46.6.0.a.1, 92.24.0.?, $\ldots$ $[ ]$
414.a4 414.a \( 2 \cdot 3^{2} \cdot 23 \) $1$ $\Z/2\Z$ $0.477003506$ $[1, -1, 0, 27, -59]$ \(y^2+xy=x^3-x^2+27x-59\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 12.12.0-4.c.1.2, 24.24.0-8.p.1.8, $\ldots$ $[(5, 11)]$
1104.g4 1104.g \( 2^{4} \cdot 3 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 48, -108]$ \(y^2=x^3+x^2+48x-108\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.p.1.3, 46.6.0.a.1, 92.24.0.?, $\ldots$ $[ ]$
3174.e4 3174.e \( 2 \cdot 3 \cdot 23^{2} \) $1$ $\Z/4\Z$ $3.830092543$ $[1, 1, 1, 1576, -22903]$ \(y^2+xy+y=x^3+x^2+1576x-22903\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.p.1.8, 46.6.0.a.1, 92.24.0.?, $\ldots$ $[(111, 1183)]$
3312.d4 3312.d \( 2^{4} \cdot 3^{2} \cdot 23 \) $1$ $\Z/2\Z$ $0.893729284$ $[0, 0, 0, 429, 3346]$ \(y^2=x^3+429x+3346\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 12.12.0-4.c.1.1, 24.24.0-8.p.1.6, $\ldots$ $[(-1, 54)]$
3450.k4 3450.k \( 2 \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.165240284$ $[1, 0, 1, 74, 248]$ \(y^2+xy+y=x^3+74x+248\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 20.12.0-4.c.1.2, 40.24.0-8.p.1.1, $\ldots$ $[(1, 17)]$
4416.c4 4416.c \( 2^{6} \cdot 3 \cdot 23 \) $1$ $\Z/2\Z$ $1.617691578$ $[0, -1, 0, 191, -1055]$ \(y^2=x^3-x^2+191x-1055\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.5, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(7, 24)]$
4416.s4 4416.s \( 2^{6} \cdot 3 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 191, 1055]$ \(y^2=x^3+x^2+191x+1055\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.7, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[ ]$
6762.bg4 6762.bg \( 2 \cdot 3 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 146, -652]$ \(y^2+xy=x^3+146x-652\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 28.12.0-4.c.1.2, 46.6.0.a.1, $\ldots$ $[ ]$
9522.d4 9522.d \( 2 \cdot 3^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $2.673270847$ $[1, -1, 0, 14184, 632560]$ \(y^2+xy=x^3-x^2+14184x+632560\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 12.12.0-4.c.1.2, 24.24.0-8.p.1.1, $\ldots$ $[(8, 860)]$
10350.bj4 10350.bj \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.372415011$ $[1, -1, 1, 670, -6703]$ \(y^2+xy+y=x^3-x^2+670x-6703\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 60.12.0-4.c.1.2, $\ldots$ $[(15, 73)]$
13248.bj4 13248.bj \( 2^{6} \cdot 3^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.234741984$ $[0, 0, 0, 1716, 26768]$ \(y^2=x^3+1716x+26768\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 24.24.0-8.p.1.7, 46.6.0.a.1, $\ldots$ $[(-11, 81)]$
13248.bk4 13248.bk \( 2^{6} \cdot 3^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.888627098$ $[0, 0, 0, 1716, -26768]$ \(y^2=x^3+1716x-26768\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 24.24.0-8.p.1.5, 46.6.0.a.1, $\ldots$ $[(164, 2160)]$
16698.j4 16698.j \( 2 \cdot 3 \cdot 11^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 361, -2427]$ \(y^2+xy=x^3+x^2+361x-2427\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 44.12.0-4.c.1.2, 46.6.0.a.1, $\ldots$ $[ ]$
20286.z4 20286.z \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1314, 17604]$ \(y^2+xy=x^3-x^2+1314x+17604\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 84.12.0.?, $\ldots$ $[ ]$
23322.c4 23322.c \( 2 \cdot 3 \cdot 13^{2} \cdot 23 \) $1$ $\Z/2\Z$ $0.836155596$ $[1, 1, 0, 504, 4464]$ \(y^2+xy=x^3+x^2+504x+4464\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 52.12.0-4.c.1.2, $\ldots$ $[(5, 82)]$
25392.p4 25392.p \( 2^{4} \cdot 3 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 25216, 1516212]$ \(y^2=x^3+x^2+25216x+1516212\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.p.1.6, 46.6.0.a.1, 92.24.0.?, $\ldots$ $[ ]$
27600.w4 27600.w \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 1192, -15888]$ \(y^2=x^3-x^2+1192x-15888\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 20.12.0-4.c.1.1, 40.24.0-8.p.1.3, $\ldots$ $[ ]$
39882.bu4 39882.bu \( 2 \cdot 3 \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 861, 9585]$ \(y^2+xy=x^3+861x+9585\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 68.12.0-4.c.1.2, $\ldots$ $[ ]$
49818.p4 49818.p \( 2 \cdot 3 \cdot 19^{2} \cdot 23 \) $1$ $\Z/2\Z$ $6.262935254$ $[1, 0, 1, 1075, -13192]$ \(y^2+xy+y=x^3+1075x-13192\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 76.12.0.?, $\ldots$ $[(1299/5, 50258/5)]$
50094.br4 50094.br \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.091162460$ $[1, -1, 1, 3244, 68775]$ \(y^2+xy+y=x^3-x^2+3244x+68775\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(29, 417)]$
54096.k4 54096.k \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 23 \) $2$ $\Z/2\Z$ $3.411302425$ $[0, -1, 0, 2336, 41728]$ \(y^2=x^3-x^2+2336x+41728\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 28.12.0-4.c.1.1, 46.6.0.a.1, $\ldots$ $[(16, 288), (33, 392)]$
69966.bd4 69966.bd \( 2 \cdot 3^{2} \cdot 13^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 4531, -115995]$ \(y^2+xy+y=x^3-x^2+4531x-115995\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[ ]$
76176.bz4 76176.bz \( 2^{4} \cdot 3^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 226941, -40710782]$ \(y^2=x^3+226941x-40710782\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 12.12.0-4.c.1.1, 24.24.0-8.p.1.3, $\ldots$ $[ ]$
79350.bk4 79350.bk \( 2 \cdot 3 \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $7.425801408$ $[1, 0, 1, 39399, -2941652]$ \(y^2+xy+y=x^3+39399x-2941652\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 20.12.0-4.c.1.2, 40.24.0-8.p.1.8, $\ldots$ $[(7508/7, 861288/7)]$
82800.dd4 82800.dd \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 10725, 418250]$ \(y^2=x^3+10725x+418250\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 60.12.0-4.c.1.1, $\ldots$ $[ ]$
101568.bj4 101568.bj \( 2^{6} \cdot 3 \cdot 23^{2} \) $1$ $\Z/2\Z$ $8.596955874$ $[0, -1, 0, 100863, 12028833]$ \(y^2=x^3-x^2+100863x+12028833\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.4, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(-1881/7, 976128/7)]$
101568.di4 101568.di \( 2^{6} \cdot 3 \cdot 23^{2} \) $1$ $\Z/2\Z$ $6.964083746$ $[0, 1, 0, 100863, -12028833]$ \(y^2=x^3+x^2+100863x-12028833\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.2, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(98393/7, 31232160/7)]$
110400.cn4 110400.cn \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 4767, 122337]$ \(y^2=x^3-x^2+4767x+122337\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 40.24.0-8.p.1.4, 46.6.0.a.1, $\ldots$ $[ ]$
110400.hd4 110400.hd \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $5.132167150$ $[0, 1, 0, 4767, -122337]$ \(y^2=x^3+x^2+4767x-122337\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 40.24.0-8.p.1.2, 46.6.0.a.1, $\ldots$ $[(1317/2, 48825/2)]$
116058.o4 116058.o \( 2 \cdot 3 \cdot 23 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 2505, 47434]$ \(y^2+xy+y=x^3+2505x+47434\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[ ]$
119646.bb4 119646.bb \( 2 \cdot 3^{2} \cdot 17^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 7749, -258795]$ \(y^2+xy=x^3-x^2+7749x-258795\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[ ]$
132618.bc4 132618.bc \( 2 \cdot 3 \cdot 23 \cdot 31^{2} \) $1$ $\Z/2\Z$ $4.752545999$ $[1, 0, 0, 2863, -57447]$ \(y^2+xy=x^3+2863x-57447\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(12418, 1377631)]$
133584.dr4 133584.dr \( 2^{4} \cdot 3 \cdot 11^{2} \cdot 23 \) $1$ $\Z/2\Z$ $5.835364016$ $[0, 1, 0, 5768, 166868]$ \(y^2=x^3+x^2+5768x+166868\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 44.12.0-4.c.1.1, 46.6.0.a.1, $\ldots$ $[(326/7, 155520/7)]$
149454.bs4 149454.bs \( 2 \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\Z/2\Z$ $3.100910902$ $[1, -1, 1, 9679, 356177]$ \(y^2+xy+y=x^3-x^2+9679x+356177\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(117, 1696)]$
155526.dd4 155526.dd \( 2 \cdot 3 \cdot 7^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.563501508$ $[1, 0, 0, 77223, 8087337]$ \(y^2+xy=x^3+77223x+8087337\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 28.12.0-4.c.1.2, 46.6.0.a.1, $\ldots$ $[(55504/3, 13006849/3)]$
162288.fc4 162288.fc \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 21021, -1147678]$ \(y^2=x^3+21021x-1147678\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 84.12.0.?, $\ldots$ $[ ]$
169050.z4 169050.z \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.753560747$ $[1, 1, 0, 3650, -81500]$ \(y^2+xy=x^3+x^2+3650x-81500\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(69, 676)]$
186576.ca4 186576.ca \( 2^{4} \cdot 3 \cdot 13^{2} \cdot 23 \) $2$ $\Z/2\Z$ $5.407975590$ $[0, 1, 0, 8056, -269580]$ \(y^2=x^3+x^2+8056x-269580\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 52.12.0-4.c.1.1, $\ldots$ $[(94, 1152), (147, 2028)]$
188922.a4 188922.a \( 2 \cdot 3 \cdot 23 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 4079, 99781]$ \(y^2+xy=x^3+x^2+4079x+99781\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[ ]$
216384.dk4 216384.dk \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 23 \) $2$ $\Z/2\Z$ $10.52418758$ $[0, -1, 0, 9343, -343167]$ \(y^2=x^3-x^2+9343x-343167\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 56.24.0-8.p.1.2, $\ldots$ $[(131, 1764), (1357/2, 51695/2)]$
216384.ib4 216384.ib \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $7.395539198$ $[0, 1, 0, 9343, 343167]$ \(y^2=x^3+x^2+9343x+343167\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 56.24.0-8.p.1.1, $\ldots$ $[(10497/4, 1088535/4)]$
231978.u4 231978.u \( 2 \cdot 3 \cdot 23 \cdot 41^{2} \) $1$ $\Z/2\Z$ $5.312839724$ $[1, 0, 0, 5008, 133872]$ \(y^2+xy=x^3+5008x+133872\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(13642/3, 1574806/3)]$
238050.fe4 238050.fe \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 354595, 79424597]$ \(y^2+xy+y=x^3-x^2+354595x+79424597\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 60.12.0-4.c.1.2, $\ldots$ $[ ]$
255162.n4 255162.n \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\Z/2\Z$ $8.053423893$ $[1, 0, 1, 5508, -153494]$ \(y^2+xy+y=x^3+5508x-153494\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(3701/11, 257673/11)]$
304704.bj4 304704.bj \( 2^{6} \cdot 3^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.771466302$ $[0, 0, 0, 907764, 325686256]$ \(y^2=x^3+907764x+325686256\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 24.24.0-8.p.1.4, 46.6.0.a.1, $\ldots$ $[(9278, 898560)]$
304704.bk4 304704.bk \( 2^{6} \cdot 3^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 907764, -325686256]$ \(y^2=x^3+907764x-325686256\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 24.24.0-8.p.1.2, 46.6.0.a.1, $\ldots$ $[ ]$
304842.y4 304842.y \( 2 \cdot 3 \cdot 23 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 6581, -198295]$ \(y^2+xy+y=x^3+x^2+6581x-198295\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[ ]$
319056.m4 319056.m \( 2^{4} \cdot 3 \cdot 17^{2} \cdot 23 \) $2$ $\Z/2\Z$ $9.738892120$ $[0, -1, 0, 13776, -613440]$ \(y^2=x^3-x^2+13776x-613440\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 68.12.0-4.c.1.1, $\ldots$ $[(72, 864), (138, 1974)]$
331200.io4 331200.io \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) $2$ $\Z/2\Z$ $7.185373715$ $[0, 0, 0, 42900, 3346000]$ \(y^2=x^3+42900x+3346000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(80, 2700), (954, 30208)]$
Next   displayed columns for results