Properties

Label 39600.h
Number of curves $4$
Conductor $39600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 39600.h have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 39600.h do not have complex multiplication.

Modular form 39600.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} - q^{11} + 6 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 39600.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
39600.h1 39600do4 \([0, 0, 0, -1267275, -549103750]\) \(4824238966273/66\) \(3079296000000\) \([2]\) \(393216\) \(1.9522\)  
39600.h2 39600do2 \([0, 0, 0, -79275, -8563750]\) \(1180932193/4356\) \(203233536000000\) \([2, 2]\) \(196608\) \(1.6056\)  
39600.h3 39600do3 \([0, 0, 0, -43275, -16375750]\) \(-192100033/2371842\) \(-110660660352000000\) \([2]\) \(393216\) \(1.9522\)  
39600.h4 39600do1 \([0, 0, 0, -7275, 4250]\) \(912673/528\) \(24634368000000\) \([2]\) \(98304\) \(1.2591\) \(\Gamma_0(N)\)-optimal