Properties

Label 394944.k
Number of curves $4$
Conductor $394944$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 394944.k have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 394944.k do not have complex multiplication.

Modular form 394944.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - 4 q^{7} + q^{9} - 2 q^{13} + 2 q^{15} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 394944.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
394944.k1 394944k3 \([0, -1, 0, -10874488929, 436480658141409]\) \(306234591284035366263793/1727485056\) \(802251119864687099904\) \([2]\) \(247726080\) \(4.0809\)  
394944.k2 394944k2 \([0, -1, 0, -679667809, 6819922039009]\) \(74768347616680342513/5615307472896\) \(2607771738961637711806464\) \([2, 2]\) \(123863040\) \(3.7344\)  
394944.k3 394944k4 \([0, -1, 0, -635062369, 7753665556705]\) \(-60992553706117024753/20624795251201152\) \(-9578239203741050873648775168\) \([2]\) \(247726080\) \(4.0809\)  
394944.k4 394944k1 \([0, -1, 0, -45279329, 91724697825]\) \(22106889268753393/4969545596928\) \(2307877284672795995799552\) \([2]\) \(61931520\) \(3.3878\) \(\Gamma_0(N)\)-optimal