Properties

Label 388080.hh
Number of curves $1$
Conductor $388080$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 388080.hh1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388080.hh do not have complex multiplication.

Modular form 388080.2.a.hh

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{11} + 5 q^{13} + 4 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 388080.hh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388080.hh1 388080hh1 \([0, 0, 0, -601923, -179744222]\) \(329680277223458/4026275\) \(294548621875200\) \([]\) \(3110400\) \(1.9246\) \(\Gamma_0(N)\)-optimal