Properties

Label 371800.bw
Number of curves $4$
Conductor $371800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 371800.bw have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 371800.bw do not have complex multiplication.

Modular form 371800.2.a.bw

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{7} - 3 q^{9} + q^{11} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 371800.bw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
371800.bw1 371800bw4 \([0, 0, 0, -31886075, -3566280250]\) \(46424454082884/26794860125\) \(2069338752081458000000000\) \([2]\) \(53084160\) \(3.3553\)  
371800.bw2 371800bw2 \([0, 0, 0, -21323575, 37764782250]\) \(55537159171536/228765625\) \(4416831910562500000000\) \([2, 2]\) \(26542080\) \(3.0087\)  
371800.bw3 371800bw1 \([0, 0, 0, -21302450, 37843599625]\) \(885956203616256/15125\) \(18251371531250000\) \([2]\) \(13271040\) \(2.6622\) \(\Gamma_0(N)\)-optimal
371800.bw4 371800bw3 \([0, 0, 0, -11099075, 74051532750]\) \(-1957960715364/29541015625\) \(-2281421441406250000000000\) \([2]\) \(53084160\) \(3.3553\)