Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 370040p have rank \(1\).
L-function data
| Bad L-factors: | 
 | ||||||||||||||||||||||||
| Good L-factors: | 
 | ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 370040p do not have complex multiplication.Modular form 370040.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 370040p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 370040.p1 | 370040p1 | \([0, 0, 0, -31958, -2121843]\) | \(379275264/15125\) | \(143947243682000\) | \([2]\) | \(1075200\) | \(1.4832\) | \(\Gamma_0(N)\)-optimal | 
| 370040.p2 | 370040p2 | \([0, 0, 0, 14297, -7755702]\) | \(2122416/171875\) | \(-26172226124000000\) | \([2]\) | \(2150400\) | \(1.8298\) | 
