Properties

Label 369600.kf
Number of curves $4$
Conductor $369600$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("kf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 369600.kf have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 369600.kf do not have complex multiplication.

Modular form 369600.2.a.kf

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} + q^{9} + q^{11} - 2 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 369600.kf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
369600.kf1 369600kf3 \([0, -1, 0, -82433, 9136737]\) \(120993582536/6237\) \(3193344000000\) \([2]\) \(1310720\) \(1.4687\)  
369600.kf2 369600kf4 \([0, -1, 0, -26433, -1531263]\) \(3989418056/307461\) \(157420032000000\) \([2]\) \(1310720\) \(1.4687\)  
369600.kf3 369600kf2 \([0, -1, 0, -5433, 127737]\) \(277167808/53361\) \(3415104000000\) \([2, 2]\) \(655360\) \(1.1221\)  
369600.kf4 369600kf1 \([0, -1, 0, 692, 11362]\) \(36594368/79233\) \(-79233000000\) \([2]\) \(327680\) \(0.77553\) \(\Gamma_0(N)\)-optimal