Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
369600.a1 369600.a \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2866753, 1280844577]$ \(y^2=x^3-x^2-2866753x+1280844577\)
369600.a2 369600.a \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 494647, 134607177]$ \(y^2=x^3-x^2+494647x+134607177\)
369600.b1 369600.b \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $5.543654308$ $[0, -1, 0, -19493633, 32986555137]$ \(y^2=x^3-x^2-19493633x+32986555137\)
369600.b2 369600.b \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.771827154$ $[0, -1, 0, -1893633, -119044863]$ \(y^2=x^3-x^2-1893633x-119044863\)
369600.b3 369600.b \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $5.543654308$ $[0, -1, 0, -1381633, -623364863]$ \(y^2=x^3-x^2-1381633x-623364863\)
369600.b4 369600.b \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $5.543654308$ $[0, -1, 0, 7514367, -956356863]$ \(y^2=x^3-x^2+7514367x-956356863\)
369600.c1 369600.c \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -20273, -631983]$ \(y^2=x^3-x^2-20273x-631983\)
369600.c2 369600.c \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 4027, -73083]$ \(y^2=x^3-x^2+4027x-73083\)
369600.d1 369600.d \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.119217008$ $[0, -1, 0, -966833, 366231537]$ \(y^2=x^3-x^2-966833x+366231537\)
369600.d2 369600.d \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $2.238434017$ $[0, -1, 0, -59333, 5954037]$ \(y^2=x^3-x^2-59333x+5954037\)
369600.e1 369600.e \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -46208, -1487838]$ \(y^2=x^3-x^2-46208x-1487838\)
369600.e2 369600.e \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 168167, -11563463]$ \(y^2=x^3-x^2+168167x-11563463\)
369600.f1 369600.f \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -155232033, -744371856063]$ \(y^2=x^3-x^2-155232033x-744371856063\)
369600.f2 369600.f \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -9972033, -10946556063]$ \(y^2=x^3-x^2-9972033x-10946556063\)
369600.f3 369600.f \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -9702033, -11628306063]$ \(y^2=x^3-x^2-9702033x-11628306063\)
369600.f4 369600.f \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -589533, -192118563]$ \(y^2=x^3-x^2-589533x-192118563\)
369600.g1 369600.g \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -61993, -5920343]$ \(y^2=x^3-x^2-61993x-5920343\)
369600.g2 369600.g \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -60193, -6282143]$ \(y^2=x^3-x^2-60193x-6282143\)
369600.h1 369600.h \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -15260033, 22914971937]$ \(y^2=x^3-x^2-15260033x+22914971937\)
369600.h2 369600.h \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -12348033, -16600644063]$ \(y^2=x^3-x^2-12348033x-16600644063\)
369600.h3 369600.h \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -1260033, 108971937]$ \(y^2=x^3-x^2-1260033x+108971937\)
369600.h4 369600.h \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 307967, 13323937]$ \(y^2=x^3-x^2+307967x+13323937\)
369600.i1 369600.i \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $26.44901647$ $[0, -1, 0, -64023233, -139789401663]$ \(y^2=x^3-x^2-64023233x-139789401663\)
369600.i2 369600.i \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $13.22450823$ $[0, -1, 0, -58699233, -173059077663]$ \(y^2=x^3-x^2-58699233x-173059077663\)
369600.i3 369600.i \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $26.44901647$ $[0, -1, 0, -58697233, -173071463663]$ \(y^2=x^3-x^2-58697233x-173071463663\)
369600.i4 369600.i \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $26.44901647$ $[0, -1, 0, -53407233, -205536081663]$ \(y^2=x^3-x^2-53407233x-205536081663\)
369600.j1 369600.j \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -154929633, -742196692863]$ \(y^2=x^3-x^2-154929633x-742196692863\)
369600.j2 369600.j \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -9777633, -11356372863]$ \(y^2=x^3-x^2-9777633x-11356372863\)
369600.j3 369600.j \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1585633, 530219137]$ \(y^2=x^3-x^2-1585633x+530219137\)
369600.j4 369600.j \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 4302367, -41389012863]$ \(y^2=x^3-x^2+4302367x-41389012863\)
369600.k1 369600.k \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -38212833, 90933213537]$ \(y^2=x^3-x^2-38212833x+90933213537\)
369600.k2 369600.k \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2372833, 1440733537]$ \(y^2=x^3-x^2-2372833x+1440733537\)
369600.l1 369600.l \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -275063, -55515603]$ \(y^2=x^3-x^2-275063x-55515603\)
369600.m1 369600.m \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $5.230928595$ $[0, -1, 0, -196833, -42638463]$ \(y^2=x^3-x^2-196833x-42638463\)
369600.n1 369600.n \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $10.04515979$ $[0, -1, 0, -207143333, 1144170767037]$ \(y^2=x^3-x^2-207143333x+1144170767037\)
369600.o1 369600.o \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $16.21279135$ $[0, -1, 0, -1483333, 639987037]$ \(y^2=x^3-x^2-1483333x+639987037\)
369600.p1 369600.p \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -33, 2937]$ \(y^2=x^3-x^2-33x+2937\)
369600.q1 369600.q \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $9.833648995$ $[0, -1, 0, -308008, -65644238]$ \(y^2=x^3-x^2-308008x-65644238\)
369600.q2 369600.q \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $4.916824497$ $[0, -1, 0, -240633, -95221863]$ \(y^2=x^3-x^2-240633x-95221863\)
369600.r1 369600.r \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $2$ $\Z/2\Z$ $12.47929216$ $[0, -1, 0, -2676833, -1424498463]$ \(y^2=x^3-x^2-2676833x-1424498463\)
369600.r2 369600.r \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $2$ $\Z/2\Z$ $12.47929216$ $[0, -1, 0, -756833, 232461537]$ \(y^2=x^3-x^2-756833x+232461537\)
369600.s1 369600.s \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.640049190$ $[0, -1, 0, -256033, -33668063]$ \(y^2=x^3-x^2-256033x-33668063\)
369600.s2 369600.s \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $3.280098380$ $[0, -1, 0, 715967, -229040063]$ \(y^2=x^3-x^2+715967x-229040063\)
369600.t1 369600.t \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -833, 3309537]$ \(y^2=x^3-x^2-833x+3309537\)
369600.u1 369600.u \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $2$ $\Z/2\Z$ $1.962752710$ $[0, -1, 0, -1793, -22143]$ \(y^2=x^3-x^2-1793x-22143\)
369600.u2 369600.u \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $2$ $\Z/2\Z$ $1.962752710$ $[0, -1, 0, -593, 5457]$ \(y^2=x^3-x^2-593x+5457\)
369600.v1 369600.v \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -153281633, -293323828863]$ \(y^2=x^3-x^2-153281633x-293323828863\)
369600.v2 369600.v \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 555306367, -2241232240863]$ \(y^2=x^3-x^2+555306367x-2241232240863\)
369600.w1 369600.w \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $4.296648178$ $[0, -1, 0, -23233, -2660063]$ \(y^2=x^3-x^2-23233x-2660063\)
369600.x1 369600.x \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $2.282070040$ $[0, -1, 0, -91833, 5556537]$ \(y^2=x^3-x^2-91833x+5556537\)
Next   To download results, determine the number of results.