Show commands: SageMath
Rank
The elliptic curves in class 35836c have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 35836c do not have complex multiplication.Modular form 35836.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 35836c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 35836.e1 | 35836c1 | \([0, -1, 0, -674, 8777]\) | \(-87808/31\) | \(-11972234224\) | \([]\) | \(27648\) | \(0.64485\) | \(\Gamma_0(N)\)-optimal |
| 35836.e2 | 35836c2 | \([0, -1, 0, 5106, -84859]\) | \(38112512/29791\) | \(-11505317089264\) | \([]\) | \(82944\) | \(1.1942\) |