Properties

Label 333564.e
Number of curves $1$
Conductor $333564$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 333564.e1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 333564.e do not have complex multiplication.

Modular form 333564.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - q^{7} + q^{9} + q^{11} - q^{13} + q^{15} + 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 333564.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
333564.e1 333564e1 \([0, -1, 0, -615986, 186291777]\) \(-34339609640704/916839\) \(-690135975842544\) \([]\) \(2533680\) \(1.9523\) \(\Gamma_0(N)\)-optimal