Properties

Label 32912.y
Number of curves $4$
Conductor $32912$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 32912.y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 32912.y do not have complex multiplication.

Modular form 32912.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 4 q^{7} + q^{9} - 2 q^{13} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 32912.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32912.y1 32912bb4 \([0, -1, 0, -218808, -27150352]\) \(159661140625/48275138\) \(350299552769712128\) \([2]\) \(311040\) \(2.0716\)  
32912.y2 32912bb3 \([0, -1, 0, -199448, -34212880]\) \(120920208625/19652\) \(142601079898112\) \([2]\) \(155520\) \(1.7250\)  
32912.y3 32912bb2 \([0, -1, 0, -83288, 9277424]\) \(8805624625/2312\) \(16776597635072\) \([2]\) \(103680\) \(1.5223\)  
32912.y4 32912bb1 \([0, -1, 0, -5848, 108528]\) \(3048625/1088\) \(7894869475328\) \([2]\) \(51840\) \(1.1757\) \(\Gamma_0(N)\)-optimal