Properties

Label 3185e
Number of curves $1$
Conductor $3185$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 3185e1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3185e do not have complex multiplication.

Modular form 3185.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + 3 q^{3} - q^{4} + q^{5} + 3 q^{6} - 3 q^{8} + 6 q^{9} + q^{10} - 3 q^{12} - q^{13} + 3 q^{15} - q^{16} + 4 q^{17} + 6 q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 3185e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3185.i1 3185e1 \([1, -1, 0, 236, 16673]\) \(251559/21125\) \(-121781421125\) \([]\) \(5040\) \(0.80662\) \(\Gamma_0(N)\)-optimal