Show commands: SageMath
Rank
The elliptic curves in class 3150s have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 3150s do not have complex multiplication.Modular form 3150.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3150s
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3150.q1 | 3150s1 | \([1, -1, 0, -38367, -2867459]\) | \(4386781853/27216\) | \(38750906250000\) | \([2]\) | \(12800\) | \(1.4454\) | \(\Gamma_0(N)\)-optimal |
3150.q2 | 3150s2 | \([1, -1, 0, -15867, -6219959]\) | \(-310288733/11573604\) | \(-16478822882812500\) | \([2]\) | \(25600\) | \(1.7919\) |