## Results (1-50 of 116 matches)

Label Class Conductor Rank Torsion CM Weierstrass equation
3150.a1 3150.a $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-78867x+9039541$$
3150.a2 3150.a $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+5508x+11416$$
3150.b1 3150.b $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+1008x-35584$$
3150.c1 3150.c $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-6867x+262791$$
3150.d1 3150.d $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-18117x-108459$$
3150.d2 3150.d $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+71883x-918459$$
3150.e1 3150.e $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-184182x-30378124$$
3150.e2 3150.e $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-11382x-483724$$
3150.f1 3150.f $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-79027317x+270424292341$$
3150.f2 3150.f $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-4939317x+4226108341$$
3150.f3 3150.f $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-4579317x+4867988341$$
3150.f4 3150.f $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-980442x+367339216$$
3150.f5 3150.f $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-331317x+55868341$$
3150.f6 3150.f $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-129942x-9432284$$
3150.f7 3150.f $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-111942x-14382284$$
3150.f8 3150.f $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+432558x-69619784$$
3150.g1 3150.g $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-23667x-1393759$$
3150.g2 3150.g $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-16917x-2210509$$
3150.g3 3150.g $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-1167x+13741$$
3150.g4 3150.g $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+1833x+70741$$
3150.h1 3150.h $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-57x+181$$
3150.h2 3150.h $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+93x+791$$
3150.i1 3150.i $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-614367x+185502541$$
3150.i2 3150.i $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-38367x+2910541$$
3150.i3 3150.i $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-7992x+227416$$
3150.i4 3150.i $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-2367x-43709$$
3150.i5 3150.i $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-117x-959$$
3150.i6 3150.i $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+1008x+20416$$
3150.j1 3150.j $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-1617x-26659$$
3150.k1 3150.k $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-36492x+2690666$$
3150.k2 3150.k $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-2742x+24416$$
3150.l1 3150.l $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-162x-754$$
3150.l2 3150.l $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-12x-4$$
3150.m1 3150.m $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/3\Z$ $$y^2+xy=x^3-x^2-10242x+563166$$
3150.m2 3150.m $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+1008x-10584$$
3150.n1 3150.n $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-984492x+376227666$$
3150.n2 3150.n $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+198x+74196$$
3150.o1 3150.o $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-12867x-559459$$
3150.o2 3150.o $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/3\Z$ $$y^2+xy=x^3-x^2+258x-3834$$
3150.p1 3150.p $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-511617x+140980541$$
3150.p2 3150.p $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-31617x+2260541$$
3150.q1 3150.q $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-38367x-2867459$$
3150.q2 3150.q $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-15867x-6219959$$
3150.r1 3150.r $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-1416492x+649694416$$
3150.s1 3150.s $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-1152942x-475178284$$
3150.s2 3150.s $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $0$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-720942x-835898284$$
3150.t1 3150.t $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-84042x-9356634$$
3150.t2 3150.t $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-5292x-142884$$
3150.t3 3150.t $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-792x+5616$$
3150.t4 3150.t $$2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+1458x-487134$$