Learn more

Refine search


Results (1-50 of 116 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
3150.a1 3150.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -78867, 9039541]$ \(y^2+xy=x^3-x^2-78867x+9039541\)
3150.a2 3150.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 5508, 11416]$ \(y^2+xy=x^3-x^2+5508x+11416\)
3150.b1 3150.b \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1008, -35584]$ \(y^2+xy=x^3-x^2+1008x-35584\)
3150.c1 3150.c \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.293817945$ $[1, -1, 0, -6867, 262791]$ \(y^2+xy=x^3-x^2-6867x+262791\)
3150.d1 3150.d \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.797554875$ $[1, -1, 0, -18117, -108459]$ \(y^2+xy=x^3-x^2-18117x-108459\)
3150.d2 3150.d \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.398777437$ $[1, -1, 0, 71883, -918459]$ \(y^2+xy=x^3-x^2+71883x-918459\)
3150.e1 3150.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -184182, -30378124]$ \(y^2+xy=x^3-x^2-184182x-30378124\)
3150.e2 3150.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -11382, -483724]$ \(y^2+xy=x^3-x^2-11382x-483724\)
3150.f1 3150.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -79027317, 270424292341]$ \(y^2+xy=x^3-x^2-79027317x+270424292341\)
3150.f2 3150.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -4939317, 4226108341]$ \(y^2+xy=x^3-x^2-4939317x+4226108341\)
3150.f3 3150.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -4579317, 4867988341]$ \(y^2+xy=x^3-x^2-4579317x+4867988341\)
3150.f4 3150.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -980442, 367339216]$ \(y^2+xy=x^3-x^2-980442x+367339216\)
3150.f5 3150.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -331317, 55868341]$ \(y^2+xy=x^3-x^2-331317x+55868341\)
3150.f6 3150.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -129942, -9432284]$ \(y^2+xy=x^3-x^2-129942x-9432284\)
3150.f7 3150.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -111942, -14382284]$ \(y^2+xy=x^3-x^2-111942x-14382284\)
3150.f8 3150.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 432558, -69619784]$ \(y^2+xy=x^3-x^2+432558x-69619784\)
3150.g1 3150.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.601517887$ $[1, -1, 0, -23667, -1393759]$ \(y^2+xy=x^3-x^2-23667x-1393759\)
3150.g2 3150.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $3.203035775$ $[1, -1, 0, -16917, -2210509]$ \(y^2+xy=x^3-x^2-16917x-2210509\)
3150.g3 3150.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.533839295$ $[1, -1, 0, -1167, 13741]$ \(y^2+xy=x^3-x^2-1167x+13741\)
3150.g4 3150.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.067678591$ $[1, -1, 0, 1833, 70741]$ \(y^2+xy=x^3-x^2+1833x+70741\)
3150.h1 3150.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.340854591$ $[1, -1, 0, -57, 181]$ \(y^2+xy=x^3-x^2-57x+181\)
3150.h2 3150.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.022563774$ $[1, -1, 0, 93, 791]$ \(y^2+xy=x^3-x^2+93x+791\)
3150.i1 3150.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -614367, 185502541]$ \(y^2+xy=x^3-x^2-614367x+185502541\)
3150.i2 3150.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -38367, 2910541]$ \(y^2+xy=x^3-x^2-38367x+2910541\)
3150.i3 3150.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -7992, 227416]$ \(y^2+xy=x^3-x^2-7992x+227416\)
3150.i4 3150.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2367, -43709]$ \(y^2+xy=x^3-x^2-2367x-43709\)
3150.i5 3150.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -117, -959]$ \(y^2+xy=x^3-x^2-117x-959\)
3150.i6 3150.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1008, 20416]$ \(y^2+xy=x^3-x^2+1008x+20416\)
3150.j1 3150.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $3.362666196$ $[1, -1, 0, -1617, -26659]$ \(y^2+xy=x^3-x^2-1617x-26659\)
3150.k1 3150.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -36492, 2690666]$ \(y^2+xy=x^3-x^2-36492x+2690666\)
3150.k2 3150.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2742, 24416]$ \(y^2+xy=x^3-x^2-2742x+24416\)
3150.l1 3150.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.935022911$ $[1, -1, 0, -162, -754]$ \(y^2+xy=x^3-x^2-162x-754\)
3150.l2 3150.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.467511455$ $[1, -1, 0, -12, -4]$ \(y^2+xy=x^3-x^2-12x-4\)
3150.m1 3150.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -10242, 563166]$ \(y^2+xy=x^3-x^2-10242x+563166\)
3150.m2 3150.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1008, -10584]$ \(y^2+xy=x^3-x^2+1008x-10584\)
3150.n1 3150.n \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.001415231$ $[1, -1, 0, -984492, 376227666]$ \(y^2+xy=x^3-x^2-984492x+376227666\)
3150.n2 3150.n \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.200283046$ $[1, -1, 0, 198, 74196]$ \(y^2+xy=x^3-x^2+198x+74196\)
3150.o1 3150.o \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $5.829710023$ $[1, -1, 0, -12867, -559459]$ \(y^2+xy=x^3-x^2-12867x-559459\)
3150.o2 3150.o \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/3\Z$ $1.943236674$ $[1, -1, 0, 258, -3834]$ \(y^2+xy=x^3-x^2+258x-3834\)
3150.p1 3150.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.588531152$ $[1, -1, 0, -511617, 140980541]$ \(y^2+xy=x^3-x^2-511617x+140980541\)
3150.p2 3150.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.177062305$ $[1, -1, 0, -31617, 2260541]$ \(y^2+xy=x^3-x^2-31617x+2260541\)
3150.q1 3150.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -38367, -2867459]$ \(y^2+xy=x^3-x^2-38367x-2867459\)
3150.q2 3150.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -15867, -6219959]$ \(y^2+xy=x^3-x^2-15867x-6219959\)
3150.r1 3150.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1416492, 649694416]$ \(y^2+xy=x^3-x^2-1416492x+649694416\)
3150.s1 3150.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1152942, -475178284]$ \(y^2+xy=x^3-x^2-1152942x-475178284\)
3150.s2 3150.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -720942, -835898284]$ \(y^2+xy=x^3-x^2-720942x-835898284\)
3150.t1 3150.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.420119185$ $[1, -1, 0, -84042, -9356634]$ \(y^2+xy=x^3-x^2-84042x-9356634\)
3150.t2 3150.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.210059592$ $[1, -1, 0, -5292, -142884]$ \(y^2+xy=x^3-x^2-5292x-142884\)
3150.t3 3150.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.605029796$ $[1, -1, 0, -792, 5616]$ \(y^2+xy=x^3-x^2-792x+5616\)
3150.t4 3150.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.605029796$ $[1, -1, 0, 1458, -487134]$ \(y^2+xy=x^3-x^2+1458x-487134\)
Next   Download to