Properties

Label 3150m1
Conductor 3150
Discriminant -10764140625000
j-invariant \( \frac{2595575}{1512} \)
CM no
Rank 0
Torsion Structure \(\mathrm{Trivial}\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 0, 5508, 11416]) # or
 
sage: E = EllipticCurve("3150m1")
 
gp: E = ellinit([1, -1, 0, 5508, 11416]) \\ or
 
gp: E = ellinit("3150m1")
 
magma: E := EllipticCurve([1, -1, 0, 5508, 11416]); // or
 
magma: E := EllipticCurve("3150m1");
 

\( y^2 + x y = x^{3} - x^{2} + 5508 x + 11416 \)

Mordell-Weil group structure

Trivial

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 
None

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 3150 \)  =  \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(-10764140625000 \)  =  \(-1 \cdot 2^{3} \cdot 3^{9} \cdot 5^{10} \cdot 7 \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{2595575}{1512} \)  =  \(2^{-3} \cdot 3^{-3} \cdot 5^{2} \cdot 7^{-1} \cdot 47^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(0\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.434848812212\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 2 \)  = \( 1\cdot2\cdot1\cdot1 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(1\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 3150.2.a.a

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} + q^{4} - q^{7} - q^{8} - 6q^{11} + q^{13} + q^{14} + q^{16} + 3q^{17} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 8640
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L(E,1) \) ≈ \( 0.869697624425 \)

Local data

This elliptic curve is not semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(1\) \( I_{3} \) Non-split multiplicative 1 1 3 3
\(3\) \(2\) \( I_3^{*} \) Additive -1 2 9 3
\(5\) \(1\) \( II^{*} \) Additive 1 2 10 0
\(7\) \(1\) \( I_{1} \) Non-split multiplicative 1 1 1 1

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(3\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add add nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss
$\lambda$-invariant(s) 2 - - 0 0 2 0 0 0 0 0 0 0 2 0,0
$\mu$-invariant(s) 0 - - 0 0 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 3150m consists of 2 curves linked by isogenies of degree 3.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{-15}) \) \(\Z/3\Z\) Not in database
3 3.1.4200.1 \(\Z/2\Z\) Not in database
6 6.2.67528125.1 \(\Z/3\Z\) Not in database
6.0.264600000.1 \(\Z/6\Z\) Not in database
6.0.2963520000.1 \(\Z/2\Z \times \Z/2\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.