Show commands for:
SageMath
sage: E = EllipticCurve("f1")
sage: E.isogeny_class()
Elliptic curves in class 3025f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3025.c1 | 3025f1 | \([1, -1, 1, -35355, -5538728]\) | \(-1459161/3125\) | \(-10466742236328125\) | \([]\) | \(31680\) | \(1.7628\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 3025f1 has rank \(0\).
Complex multiplication
The elliptic curves in class 3025f do not have complex multiplication.Modular form 3025.2.a.f
sage: E.q_eigenform(10)